
Diploma Thesis

Rule Based Software Documentation
– Documenting The Collaboration Aspect

Of Software Systems

submitted by

Andre Albert

born 14.11.1982 in Löbau

Technische Universität Dresden

Fakultät Informatik
Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

Supervisor: Dipl.-Inf. Andreas Bartho
Professor: Prof. Dr. rer. nat. habil. Uwe Aßmann

Submitted January 31, 2008

Abstract

Structuring big software systems into reusable building blocks has proven
to be an adequate mean to accomplish the increasing complexity prevailing
in todays software projects. In such a scenario ‘no object is an island’
and relations between participants of these mini architectures are crucial to
understand the build-up of the whole system. However, the collaboration
aspect of a software system cannot be adequately documented using inline
comments as part of the source code. This is mainly because the scope
of such a comment is limited to one (following) program construct, the
different collaboration contexts of the observed program construct are yet
disregarded and references to participants can be only provided literally in
an informal manner.

This thesis contributes a concept of a novel documentation approach that
allows to adequately document object collaborations in software systems.
A key issue is the separation of covered source code and related comments
into different documents. A formal description of the collaboration is then
needed to glue both concepts together and applies an M-to-N relationship
between programming code and comments. When browsing source code in
an editor, documentation entries fade in context sensitive. In case of multi-
ple matching documentation entries, we will elaborate a set of heuristics to
rank resulting entries by their relevance. Furthermore, an Eclipse plug-in
utilizing the concepts of this work will be implemented to demonstrate the
usage of this new form of an internal software documentation. As a proof
of concept, the tool has been tested in a case study covering three different
sized software projects with documentation concerning their collaboration
aspects.

Rule-based Documentation CONTENTS

Contents

1 Introduction 1
1.1 Problem specification . 2
1.2 Hypotheses . 5
1.3 Structure of this thesis . 5
1.4 Demarcation . 6

2 Related Work 7
2.1 Classification of current documentation approaches 7

2.1.1 Documentation embedded in program 7
2.1.2 Program embedded in documentation 8
2.1.3 Unrelated documentation and source code documents 9
2.1.4 Directly related documentation and source code doc-

uments . 9
2.1.5 Indirectly related documentation and source code

documents . 10
2.1.6 Conclusion . 11

2.2 Describing and Recognizing Patterns 12
2.2.1 By Pattern Role Annotation 13
2.2.2 By decomposition to elemental patterns 14
2.2.3 Using pointcut languages 15
2.2.4 Graph based approaches 16
2.2.5 Ontology based approaches 18
2.2.6 By using a logic programming language 19
2.2.7 Conclusion . 20

3 Conception 23
3.1 Requirements Analysis . 25
3.2 A theoretical foundation . 26

3.2.1 The Role Modeling Approach 26
3.2.2 The Documentation Model of RuBaDoc 27
3.2.3 Formal describing a collaboration with DataLog . . . 31
3.2.4 Conclusion . 33

3.3 Domain Model . 35
3.4 Documentation Language . 38
3.5 Rating of documentation entries 42

3.5.1 Context Independent Heuristics 42
3.5.2 Context Sensitive Heuristics 43

3.6 Conclusion . 45

4 Tool Implementation 47
4.1 The Eclipse Platform as a foundation for RuBaDoc 47
4.2 The RuBaDoc Eclipse Plug-in 48

4.2.1 The Consistency of the Code–Comment Relation . . . 48

iii

Rule-based Documentation CONTENTS

4.2.2 Architecture model . 51
4.2.3 JQuery Integration . 54
4.2.4 Documentation Parser 57
4.2.5 Eclipse Documentation View 58
4.2.6 Relevance Ordering Mechanism 60
4.2.7 Documentation Explorer 60
4.2.8 Documentation Input Dialog 60

4.3 Conclusion . 62

5 Evaluation 65
5.1 Evaluation Criterions . 65
5.2 RuBaDoc Eclipse Plugin . 68
5.3 JHotDraw . 70
5.4 Apache Tomcat . 71
5.5 Conclusion . 73

6 Conclusion and Future Work 77

A Built-in JQuery Specific TyRuBa predicates and rules 81
A.1 Unary Core Predicates . 81
A.2 Binary Core Predicates . 82
A.3 Ternary Core Predicates . 83
A.4 Derived Predicates . 84

A.4.1 Custom Predicates . 85

B The JavaCC Grammar File 86

C The RuBaDoc Project-CD 89
C.1 Initializing The Plug-In . 89

iv

Rule-based Documentation LIST OF FIGURES

List of Figures

1 Non-cohesive comments: the references to collaboration par-
ticipants used in the comments Cmt1 - Cmt3 are only infor-
mal – the whole collaboration is not adequately covered . . . 3

2 Tangled comments: Members B and C are documented ac-
cording to two different collaborations 4

3 Scattered comments: Members B and D are similar and de-
mand the same comment . 4

4 A taxonomy of different documentation approaches 7
5 the bottom-up and top-down execution on a composite pat-

tern (taken from [NSW+02]) 17
6 process of recognizing a pattern by means of a general pur-

pose logic programming language (taken from [KP96]) 20
7 Specification of the Figure and Child role in a FigureChain

role model (taken from [Rie00]) 27
8 A visual representation of the role model specified in 7 (taken

from [Rie00]) . 27
9 the RuBaDoc approach in concept 29
10 A Domain Model of RuBaDoc 35
11 Documentation language in a graphical EBNF notation . . . 39
12 A Proxy pattern in a UML class diagram notation 40
13 A Taxonomy of Ranking Heuristics 42
14 Use Case Diagram of the working scenario 49
15 UML class diagram of the RuBaDoc core architecture 53
16 An screenshot of the Eclipse Documentation View 59
17 Screenshot of the Documentation Explorer after selecting a

concrete occurrence from the tree 61
18 Dialog for writing a new Documentation Entry 63
19 Screenshot of the Documentation Entry described in Listing 6 70
20 Time to build up a fact base with respect to an increasing

LoC amount . 76
21 Measurements of the execution time of different collaboration

queries . 76
22 Specifying a Working Set for Documentation 90

v

Rule-based Documentation LIST OF FIGURES

vi

Rule-based Documentation LIST OF TABLES

List of Tables

1 Source Code metrics of the RuBaDoc plug-in 69
2 JHotDraw source code metrics 71
3 RuBaDoc/JQuery Initialization Benchmark 74
4 Evaluation: Template Class 74
5 Evaluation: Singleton . 74
6 Evaluation: Visitor . 75
7 Unary Core Predicates . 81
8 Binary Core Predicates . 82
9 Ternary Core Predicates . 83
10 Derived Predicates . 85
11 Custom Predicates . 85

vii

Rule-based Documentation LIST OF TABLES

viii

Rule-based Documentation LISTINGS

Listings

1 An example documentation entry - written according to
grammar presented in figure 11 40

2 A simple Java Class . 56
3 Documenting a simple Collaboration using the @rbd tag . . . 56
4 fact base representation of Listing 2 57
5 Documenting a general object collaboration 66
6 Documenting a Singleton Pattern 67
7 Documenting a Visitor Pattern 68
8 Documenting a Visitor Pattern 73
9 JavaCC input-document to generate a parser for the docu-

mentation language designed in figure 11 86

ix

Rule-based Documentation LISTINGS

x

Rule-based Documentation 1 INTRODUCTION

1 Introduction

Within the last decades, software projects have grown up remarkable. To
actually accomplish the resulting complexity, humans usually try to raise
the level of abstraction. So programming languages evolved from being
strictly imperative to higher level languages. A well established result of this
trend is object oriented programming, as becoming popular by the language
Smalltalk in 1980. Object oriented programming allows the developer to
abstract things from the problem domain to corresponding software objects.

This evolvement reduced the effect of so called ”spaghetti code”, since it
allows a much more structured approach. However — when talking about
big software systems — this alone is not a universal remedy at all. Instead
of ”spaghetti code” we now might have something like ”tortellini code”,
which might be also hard to maintain. To actually manage such object
oriented systems, architects again raised the level of abstraction. They
often think in idioms which are conceptually above sole class-level concepts.
An evidence for this trend might be the ample success of the GoF book
”Design Patterns: elements of reusable object-oriented software” [GHJV95].
These presented patterns (respectively software patterns in general) can
be understood as design building blocks providing “a proven solution to a
recurring problem within a certain context” [App00]. Such reusable mini
architectures consist of a set of related participants where each one fulfills
assigned responsibilities (plays a certain role). In conclusion, today the
collaboration aspect of a software system is a crucial factor covering all
phases of a software engineering process.

But what about documentation? A similar evolvement is not recog-
nizable. When commenting source code, programmers seem to be rather
conservative. Inline source code comments — which fit well to the imper-
ative programming paradigm — are still widely favored by programmers
when commenting code.

Indeed, commenting code using inline comments is really simple, but
it currently cannot cope with the progress presented above. Due to the
fact that these comments are directly attached to one particular source
code fragment, their scope is limited only to the observed fragment. In
particular, it is not feasible to document a program construct in context to
different collaborations with other participating elements. Therefore, inline
comments are not well suited to document collaborations adequately.

Instead of inline comments, some argue that UML diagrams (especially
class diagrams) might be a good solution to document the architecture of a
software project. Obviously, they have a point, and this work does not plan
to replace such diagrams. Nevertheless, class diagrams can grow up fast and
are sometimes hardly traceable. Furthermore, UML class diagrams are not

1

Rule-based Documentation 1 INTRODUCTION

reducible and disallow an adequate divide-and-conquer principle to handle
complex collaboration phenomena in a controlled manner. Moreover, these
charts cannot represent the former mentioned ‘design building blocks’ ex-
plicitly. In addition, class models cannot document an object collaboration
task in general. Indeed, it is possible to manually mark special classes that
together fulfill a certain collaboration (and assign some commentary-nodes),
but in this scenario only one concrete occurrence of the collaboration task is
covered – but not the collaboration in general. Finally, UML diagrams are
not close enough to the implementation phase, since they are usually not
focussed to the current context (such as the current cursor position in an
editor). Even if, this information is limited to just highlighting the current
class, but it cannot directly clarify the important relations to other building
blocks.

In conclusion, there might be a need for a novel documentation approach
which is very close to the implementation phase and is able to cover the
crucial mini architectures properly. This approach allows us to document
source code in context to a collaboration with other source code fragments.

1.1 Problem specification

Writing documentation was never considered really popular by developers.
Regarded as an unproductive process, developers sometimes even omitted
it. But even if they write documentation, studies such as [LSF03, KM01]
state that these annotations are rarely updated and sometimes may become
out of date.

Nevertheless, documentation becomes more and more important. “Inad-
equate or missing documentation is a major contributor to the high cost of
software maintenance and to the distaste for software maintenance work”
[MM83]. Regarding software maintenance, [KC02] expects that “50% of a
programmer’s time is spent trying to understand existing code.” Keeping in
mind that “the maintenance phase accounts for over 60% of the development
time-line” [Ves04], tool support for software comprehension is therefore an
import factor to reduce costs in current software projects.

The introduction section already points out the strong relationships be-
tween collaborating source code elements inside a mini architecture. Every
hint or advice might be very valuable for a developer within a project team.
Often, these hints are given by inline comments as part of the source code.
As stated above, this approach is not optimal. The following enumeration
lists anomalies resulting when documenting the collaboration aspects of an
object oriented design using inline comments:

2

Rule-based Documentation 1 INTRODUCTION

Non-Cohesive documentation Inline comments – as part of the source
code – cannot cover interrelated program constructs properly. Be-
cause of their fixed attachment to one contiguous syntax fragment
and the absent possibility to formally reference related source code 1,
inline comments are inadequate to document a whole pattern consist-
ing of more than one participants.

The scenario is depicted in figure 1. The comments Cmt1, Cmt2 and
Cmt3 2 may document the sole intents and responsibilities of the
classes A, B and C, but they can not refer to other collaboration par-
ticipants (dashed line) properly to describe the whole concept of the
pattern. Indeed, it is currently possible to provide literal references
to other collaboration members inside the comment, but this leads
to weak related documentation fragments that are unhandy to main-
tain (such as after renaming classes or an adding new member to the
collaboration).

Figure 1: Non-cohesive comments: the references to collaboration partici-
pants used in the comments Cmt1 - Cmt3 are only informal – the whole
collaboration is not adequately covered

Tangled documentation When participating in different collaborations,
a program construct typically plays different roles according to differ-
ent relations to other participants. Usually, each distinct role of an
element demands a different explanation. This can be seen as an N-to-
1 relationship between documentation (multiplicity N) and a source
code element (multiplicity 1). In a primitive approach, one might
merge all different comments to one huge agglomerated comment.
This is yet also unhandy to maintain, since one comment captures
different concerns. Using the vocabulary of aspect oriented program-
ming, we now have a tangled documentation.

In the scenario depicted in figure 2 two collaborations (a Composite C
and a Proxy pattern P) overlap. The classes B and C are documented
according to two different collaborations contexts. To actually realize
this scenario, one might merge the comments CmtC2 and CmtP1 in

1references can be provide literally
2in the following figures, Cmt does not denote fields or methods in a class definition,

but represent a comment for the given class definition

3

Rule-based Documentation 1 INTRODUCTION

the class definition of B to an agglomerated comment that contains
both explanations.

Figure 2: Tangled comments: Members B and C are documented according
to two different collaborations

Scattered documentation As a counterpart to the observation above,
different program constructs can play the same role within one single
collaboration. This phenomenon obviously leads to a scattered docu-
mentation. Here, equal documentation is spread over a set of similar
program constructs. A 1-to-N relationship between documentation
(multiplicity 1) and program constructs (multiplicity N) is observ-
able.

In figure 3 the elements B and D are similar in the collaboration since
they both describe leaf-objects of the defined recursive structure. To
explain their role in the pattern, the comment Cmt2 is spread over dif-
ferent class definitions and thereby breaks the single source principle.
Because there is no single (editable) source available, such documen-
tation scenarios are unhandy to maintain. In addition, for a developer
who wants to document his work, spreading similar comments over dif-
ferent class definitions is a demotivating, inefficient and boring task.

Figure 3: Scattered comments: Members B and D are similar and demand
the same comment

As shown in the enumeration above, inline comments lack in document-
ing the collaboration aspect of object oriented code. This may result in
out-dated — or even worst — in absent documentation. By addressing
these limitations, this thesis will present a novel approach of documenting
source code that is able to handle these three deficiencies.

4

Rule-based Documentation 1 INTRODUCTION

1.2 Hypotheses

By unlocking the fixed relation between code and inline comments one can
document a set of related participants (source code fragments) representing
a particular problem solution. An additional intermediate layer between
code and human readable comments allows a clean separation of both con-
cepts. Such a layer consists of a formalization of the observed collabora-
tion describing all participants and their inner relations in an unambiguous
way. Now, certain source code elements qualify themselves for explaining
comments when matching the collaboration description. This results in an
M-to-N relationship between documentation and source code which enables
a clean and easy to maintain documentation.

This solves the anomalies of tangled as well as scattered comments that
were previously presented in section 1.1. Hopefully, preventing scattered
comments might motivate developers to document their work, since they
are now able to cover wide areas of similar code efficiently with just one
single documentation entry that can be centrally managed.

Additionally, the source code will be in a position to document itself.
Since the relationship between both concepts rely on a formal collaboration
description, new or modified source code may qualify itself for certain com-
ments if it matches the description. This solves the problem of outdated
documentation that was reported in [LSF03].

1.3 Structure of this thesis

The main contribution of this work is a concept of an internal software
documentation language that allows to document source code elements de-
pending on their different collaboration contexts. To follow this goal, the
thesis is structured as follows:

The subsequent chapter 2 presents and discusses current work. The
concern of this consideration is twofold. First, we observe and structure
different approaches in the area of software documentation. The following
subchapter addresses the aspects of describing and recovering a documented
collaboration within the project workspace. This analysis examines differ-
ent mechanisms that allow documentation entries to address source code
elements from the outside to realize the mentioned Code–Comment rela-
tion.

Thereon, chapter 3 elaborates a concept for a rule based documentation
language, which leads to a corresponding tool implemented further regarded
in chapter 4. Finally, chapter 5 proves the taken assumptions by evaluating
the implemented tool using some different sized software projects as case
study subjects. As a rounding for this thesis, the last chapter 6, embraces
the generated knowledge and will give us an outlook for possible future
work.

5

Rule-based Documentation 1 INTRODUCTION

Note: In this thesis, the term collaboration is quite open defined as “a
set of objects that relate to each other by object relationships.” [Rie00].
Sometimes we use the terms ‘pattern’ and ‘collaboration’ synonymously.

1.4 Demarcation

The goal of this thesis is not to replace existing documentation approaches
such as inline comments. Inline comments suit well when it is demanded
to explain the interface of a sole program construct such as a class, method
or a field. Their assignment to covering source code is yet really simple
and exact, and no look-up mechanisms are required to obtain explanations
for a currently opened document. Besides, there is an approved tool sup-
port for extracting these information to an (offline) hypertext based API
documentation.

Concerning this thesis, the proposed approach covers aspects of an object
oriented design that were previously not adequately documentable in source
code using inline comments. Therefore, the final tool can be rather seen
as an addition to the means of current documentation approaches. Having
both, an API - as well as a collaboration documentation, the software under
study become more accessible for fellow developers in the project team.

6

Rule-based Documentation 2 RELATED WORK

2 Related Work

The notion of this chapter is twofold. First, a taxonomy basing on the
relationship between source code and comments will be presented. This
classification is somewhat geared to the one presented in [Ves99]. By the
means of that discussion, the approach proposed in this work will be ar-
ranged into that taxonomy.

A second section 2.2 is concerned about how to technically realize the
chosen Code–Comment relationship. The approaches we are going to exam-
ine in this section may serve as a foundation of the proposed documentation
tool.

2.1 Classification of current documentation approaches

As a brief introduction to the domain of software documentation, this sub-
chapter presents a taxonomy based on the type of the Code–Comment re-
lation. The result of this classification is depicted in figure 4 and is later
used to arrange our approach into the area of discussion.

Figure 4: A taxonomy of different documentation approaches

In short, the relationship can be either strong when both concepts are
embedded into the same document or rather weak (loose coupled) when
they are divided into separate documents. Each of the forthcoming subsec-
tions will describe one of these approaches in more detail and discusses their
advantages and disadvantages. Final to each examination, a representative
of that approach is particularly covered.

2.1.1 Documentation embedded in program

In this model, the documentation is embedded as inline comments into the
source code, hence it becomes a fixed part of the program. The primary
entity in this model is obviously the programming code. Most developers
favor this concept, because when writing code, one is usually focussed with
the current problem to solve, and therefore can provide suitable comments.

7

Rule-based Documentation 2 RELATED WORK

Another advantage of this fixed relation between code and comments is
its convenience, since there are no additional tools or look-up mechanisms
required.

However, when applying a more complex architecture with a lot of in-
terdependence relations between source code elements, this model lacks in
providing an overall view. Section 1.1 showed that this embedded approach
cannot capture the collaboration aspects of a software system properly.

Another disadvantage derives mostly from the primary status of the
source code entity. Because of focusing on programing code, the person
who writes the explanations has no literate freedom to structure his docu-
mentation properly. The structure of the documentation is defined by the
program structure and is therefore sometimes hardly traceable. Hence, this
approach is rather well suited for an Interface Documentation (or API Doc-
umentation), where the documentation structure is strongly based on the
program structure.

Representatives: Available tools, following this approach, typically offer
mechanisms to extract these inline comments to external – mostly hyper-
text based – documents. Predefined keywords (attributes) can be used to
annotate meta information allowing to structure the later generated docu-
ment in an adequate way. These tools are called Doclets and the JavaDoc
tool is a well-known representative for the Java language.

2.1.2 Program embedded in documentation

As a counterpart to the previous model, this attempt addresses the prob-
lems of the absent possibility to structure the documentation properly. Here
program code is aligned to the documentation structure and ‘should be writ-
ten similar to literature’. The code develops along with the documentation.
Both concepts are embedded into one single document and can be later
separated by the means of special purpose tools. This style of document-
ing software is called Literate Programming as coined by Donald Knuth in
[Knu84].

This alternative also brings some drawbacks that were discussed in
[Nør00]. When mainly focussing on the documentation structure, the pro-
gram flow is sometimes harder to comprehend for a developer. Programers
also do not want that documentation — as an incidental process — affects
their source code in such an influential way. In addition, “Literate Program-
ming systems [...] are not suited for modern object-oriented development”
[Ves99].

8

Rule-based Documentation 2 RELATED WORK

Representatives: The first environment supporting this approach was
the WEB system [Knu84] developed by Knuth in 1984. The system imple-
ments the ideas of Literate programming by providing tools for extracting
compilable source code (called TANGLE) and generating formatted, print-
able documentation (called WEAVE). Nowadays, these tools usually play a
minor role.

2.1.3 Unrelated documentation and source code documents

Here, documentation and programming code are divided into separate doc-
uments, which allows one to structure both independently of each other.
Thereby, the documentor has all the literate freedom to structure the doc-
umentation at his own will, without affecting the source code as in Literate
Programming.

The relationship between both concepts is defined in an informal mostly
literary manner, so that there is no physical binding connecting them strictly
together. Due to that unrelated model, consistency problems may occur and
need to be supervised. In addition, these documents are not well suited to
provide internal software documentation, since the documentation cannot
offer access to the source code.

Representatives: Examples for this approach might be Wiki portal sys-
tems. Wikis are online databases, which can be directly edited by everyone
(authorized) using a web fronted. Developers can provide general hints and
advices to their implemented code. Source code can be pasted in but is not
addressed in a formal way. Everyone interested is able browse or search by
keyword for relevant comments and advices.

2.1.4 Directly related documentation and source code docu-
ments

To overcome the interference problems prevailing inside the previously in-
troduced embedded model but also allowing to address concrete elements
in source code, we need an external documentation using referencing mech-
anisms to refer to source code elements unambiguously.

For that purpose, there might be different alternative approaches that
serve for such a reference mechanism.

• In a first attempt, the source code stays untouched and is addressed
using a Uniform Resource Identifier (in short: URI). Such a URI iden-
tifies a resource with a compact string of characters. Examples follow-
ing that schema are Qualified Names or Path Expressions in general
that describe a source code construct by its hierarchical path.

9

Rule-based Documentation 2 RELATED WORK

• Otherwise, it is imaginable to markup source code adequately using
special language extensions that do not affect the building and exe-
cution of the program. Later, these markups can be addressed from
outside, hence gluing both documents together. This approach pro-
vides a finer granularity as qualified names, since it allows to exactly
address every single line in source code. However, a foregoing proper
annotation of the source code is required.

Nevertheless, both mechanisms have in common, that they only allow
a fixed relationship that disregards the context of the addressable targets.
Since the different relationships between targets are not reflected, the ap-
proach is not well suited to serve as a basis technology for documenting
collaborations in source code. A set of interacting members can only be
addressed by aggregating the result of different references to program con-
structs (i.e., to the concrete collaboration members). But is the whole (the
collaboration) the sum of its constituent parts? Obviously not, because this
only covers a particular occurrence of the pattern but not the pattern in
general.

Representatives: Elucidative Programming [NAC+00] is an approach
following this schema. The metaphor of the two separated documents is
fully adopted visually. The Elucidator, developed by Kurt Nørmark, uses a
two-frame fronted to present documentation and program code simultane-
ously. The result is intended to view on a web browser, somewhat similar
to JavaDoc. The defined relationships between documentation entries and
the referred source code elements are transformed to hyperlinks by the Elu-
cidator tool. The Elucidator supports references from documentation to
source (slink), source to documentation (dlink) and to any external docu-
ment (xlink). To manage slinks, the elucidator employs both mechanisms
presented above — URIs and Source Markers.

2.1.5 Indirectly related documentation and source code docu-
ments

So far, when using a direct relationship, as presented above, one can only
document one particular pattern instance which is dissatisfying since other
occurrences remain uncovered. A pattern as a whole cannot be covered,
since there is no explicit knowledge about the collaboration structure given.

This leads to a last sort of approaches, where program units are dy-
namically selected for a comment by matching a certain pattern. Such a
pattern formally describes the collaboration participants and their relations
to each other and can be used as a query parameter. In contrast to the
direct related approach, elements are not fetched by their exact position,
but indirectly by their relationships to other participants.

10

Rule-based Documentation 2 RELATED WORK

Representatives: To the best of our knowledge, no work exists trying
to fully adopt the concepts described. However, the InsensiVE Toolsuit 1

[MK06] for the Smalltalk language allows one to define so called “inten-
tional views” on the source code level by using the patterns formalization.
Further, it is also possible to attach a comment covering the whole view.
But unfortunately, the approach is not fine grained enough to capture each
participant and further describing its responsibilities and intention within
the collaboration.

2.1.6 Conclusion

This chapter provides an overview over the different types of internal soft-
ware documentation. Using the relationship between covered source code
and documentation as its main criterion, the observation results in two main
classes.

When embedding source code and comments into one document, they
either affect each other in an undesirable way or disallow the proper doc-
umentation of a collaboration consisting of a set of participants. This ap-
proach does well fit if it is required to document the API of a software
system, but actually encounters its limitations on adequately documenting
an object collaboration.

The separation of both concepts might solve these problems, but re-
quires some further work for assigning documentation to source code ele-
ments.

During the analysis, we have already denoted that a decoupled relation-
ship might be the best solution when documenting the collaboration aspect
of a software system. Due to the fact that collaborations are independent
from concrete class level constructs, a fixed relationship to these elements is
undesirable and therefore does not gain our attention. In addition, a fixed
relation between code and comments only covers one concrete occurrence
of a collaboration and is inflexible regarding code changes (relations need
to be maintained). Therefore, this work is arranged within the class of in-
direct related external documents, as presented in section 2.1.5. To archive
this goal, we require a formalization of the collaboration as a mean to glue
documentation and source code together. For that purpose, the following
section examines approaches that may serve as a base mechanism managing
the relations between both concepts: Source Code and Documentation.

1available at: http://www.intensional.be/

11

http://www.intensional.be/

Rule-based Documentation 2 RELATED WORK

2.2 Describing and Recognizing Patterns

To realize the desired relationship between source code and its corresponding
documentation, an additional intermediate layer, managing all references
between both entities, is required. The functionality of this layer is twofold.
First, it must provide a language to formally describe the collaboration;
and second an inference engine that is able to query for instances of the
given formalization in source code. This work does only focus on the static
structure aspect of a collaboration. Additionally discussing the runtime
behavior of the participants is rather complicated and demands some more
elaborated mechanism. Integrating such a feature might be a topic for future
work but is currently omitted. Current work that combines structural and
behavioral aspects to retrieve patterns in source code can be found in [TL03].

In this thesis, a comment is not a first class construct, thus only exists as
part of a parent documentation entry that covers the whole collaboration.
This parent entry is designed to make use of the mechanism that we will
examine within this section to define the set of class level constructs par-
ticipating in the collaboration. In this context, a comment only covers the
exposed parts (the members) of a pattern query result. It is not desired that
each comment holds a (own) query that tells him which items it actually
covers.

This concept is not adequately realizable using the ‘direct related’ ap-
proaches presented in chapter 2.1.4, since these attempts disregard the rela-
tionships between participating collaboration members. Therefore, mecha-
nism such as Path Expression or Source Markers are omitted in this section.
Instead, we are looking for means to describe the relations of a collaboration
formally.

Usually, the approaches presented in this section base on a higher level
representation above the one of source code to allow a machine accessible
description of the pattern. As an inversion to the direct addressing ap-
proach – where participants are exactly addressed – elements now qualify
themselves if they match a defined pattern.

When defining such a pattern, we want to make an assertion that the
actor that formally describes the collaboration structure of a documentation
entry is the same person that has also implemented (or even chosen) the
design artifacts for the observed software project. Therefore, we assume
that he has some design knowledge to accurately describe the structure of
the collaboration to document.

Each of the following considerations presents one approach in general and
finally shows how (or if) this work could possible make use of this concept.
Terminatory to this whole section, the applicability of each approach will
be discussed on the basis of the following requirements.

12

Rule-based Documentation 2 RELATED WORK

concise: We demand a concise accurate notation resulting from the idea
of merging documentation and pattern description into one physical
document. Obviously, the documentation takes priority over the col-
laborations formalization. Therefore, the description language should
be concise and in a human accessible textual notation so that it is
possible to embed the formalization in each documentation entry.

simple: The effort to build up a reasoning environment should be as min-
imal as possible. Writing documentation is usually not something a
developer is thrilled about. Describing a pattern to document should
be done out of the box. In particular, it should be avoided to prior
model the collaboration using third party tools. Also it is undesirable
if the source code needs to be annotated with special formated marks,
since this results in additional efforts demotivating the developer.

flexible: The person who writes the documentation should be able to adjust
the granularity of the pattern as needed. We demand full freedom,
ranging from addressing a general pattern with a lot of occurrences or
even to only cover one concrete exact pattern instance in code.

available: Finally, we have not planned to implement our own collabora-
tion mining algorithm, since this is beyond the scope of this work.
So we rely on available implementations. The last requirement there-
fore demands an approved and maintained tool implementation with
a strong community behind it.

Final to this whole chapter, we will use these considerations as a founda-
tion for a brief evaluation that supports the choice for one of these following
mechanisms.

This section only covers a preselection of different approaches that seems
to be most suitable for this work. However, the area of software pattern
formalization is wide, and there is a lot of effort done during the past years.
A comprehensive review of current work can be found in [Bar03].

2.2.1 By Pattern Role Annotation

When applying a pattern, one has to assign the exposed roles to certain
class level constructs that together fulfill a certain collaboration task. But,
at the end of this process these roles are not directly identifiable in the
source code. Therefore, Hedin in [Hed97] proposed to annotate the source
code elements with pattern roles by the means of attribute grammars.

This alone is not powerful enough to distinguish between certain pattern
instances in source code, since it will result in a set of role buckets, each
consisting of a set of program constructs with similar responsibilities that
are annotated by the same role name. So, Hedin further introduced simple

13

Rule-based Documentation 2 RELATED WORK

collaboration rules that define relations and constraints between particular
annotated roles.

A drawback of this attempt is, that it is required to prior mark-up the
source code properly to allow a later reasoning. Also – as far as we know
– there is no tool implementation available. So, for the aims of this thesis,
this approach is somewhat less important.

2.2.2 By decomposition to elemental patterns

A (design) pattern is usually given in an informal way, letting some free-
dom to the developer how to concretely transform it to executable source
code as a formal mathematical symbolic language. Because of this creative
procedure, the pattern as a whole, cannot be easily identified at a later time.

As mentioned, a possible solution is to formalize the pattern itself, which
in turn requires some basic idioms/tokens from that the formalized pattern
language consists of. This process leads to a formalization-grade tradeoff.
So Jason Smith and David Stotts in [Smi02] already cognized that “a full,
rigid formalization of static object, methods, and fields would be another
form of source code”. This lowers the flexibility of patterns significantly
and “defeats the purpose of patterns”.

Therefore they investigate to find some basic, elemental idioms of that
patterns consists of. They called them Elemental Design Patterns as in-
troduced in [Smi02]. In their work, these elemental pattern are formalized
by the means of a calculus 1. More elaborated patterns can be defined by
composing already defined respectively elemental patterns together.

A benefit of this approach is that these elemental patterns are easier
identifiable in source code, and therefore allows a ”divide and conquer”
principle to find some more elaborated patterns. But to the best of our
knowledge, no implementation exists trying to recover patterns in source
code following a description that is given by such a theoretical calculus.

However, a similar schema also appeals in [MMvD07] that aims to formal-
ize crosscutting concerns. In this paper, the concept of a ‘sort ’ is somewhat
comparable to an ‘elemental design pattern’ as discussed above. A ‘sort ’ is
the elemental part of a concern when talking about aspects. In their work
([MMvD07]) Marin, Monnem, and van Deursen gather a catalogue of 12
most commonly encountered sorts.

The whole catalogue was formalized in [Mar01] with a query language
that is somewhat similar to the AspectJ pointcut language. A composition
of specific sort instances is called a Concern Model and represents a certain
program aspect. This divide and conquer approach enables the identifica-

1the calculus is called ρ calculus which is an extension to the ς calculus known by the
work of Abadi and Cardelli [AC96]

14

Rule-based Documentation 2 RELATED WORK

tion of aspects within software projects, as demonstrated with the SoQueT
1 Eclipse plugin.

For a source code documentation, this approach might be somewhat to
inflexible, due it restricts the documentor to use a granularity depending on
the catalog of elemental parts.

2.2.3 Using pointcut languages

The separation of comments and programming code and the separation of
cross-cutting concerns (when talking about Aspect-Oriented programming)
are in a certain way similar to each other. One can think of an advice as a
source code commentary. It is therefore imaginable that their ”addressing”-
language could also be applied in our scenario. By the term ‘pointcut lan-
guage’ we refer to the popular (or default) query language used in AspectJ
2, since there are currently efforts (such as [HOA+06, EMO04, DJ04]) to
use different approaches as an underlying query mechanism which we will
not regard in this section.

A center concept in the area of Aspect Oriented Software Development is
the pointcut. To explain the term in more detail, we need to further intro-
duce the concept of joinpoints. Conceptually, a joinpoint identifies any point
within a program’s execution flow. In practice, the granularity depends on
a chosen aspect language, but mostly satisfying the purpose. Some common
joinpoints are for example: Method call and execution, Read/write access
to a field, Object and class initialization. Further, a pointcut is a collection
of several joinpoints and locates the position(s) where the advice (the aspect
code) should be woven in.

There is currently one approach that uses these pointcut expression in a
more general way as a code query language. The (query) language is called
Panther [PHW04] and is “a superset of the (static part) of the pointcut
language used by AspectJ” [Fer04] and is based on the PUMA 3 query
engine.

As mentioned, the idea of this thesis is to document source code elements
in context to a collaboration. But are aspects and collaborations fully com-
parable?

In the glossary on http://www.aosd.net 4, one can read that: “As-
pects are one kind of concern in software development.” A pointcut query

1SOrts QUEry Tool: Available at http://swerl.tudelft.nl/bin/view/AMR/SoQueT
2http://www.eclipse.org/aspectj
3abbr. for: Pattern Underlying MAtcher; http://www.research.ibm.com/cme/

components/components.html#Frameworks
4the homepage of the annual Aspect-Oriented Software Development conference (vis-

ited on 2007-12-08)

15

http://www.aosd.net
http://swerl.tudelft.nl/bin/view/AMR/SoQueT
http://www.eclipse.org/aspectj
http://www.research.ibm.com/cme/components/components.html#Frameworks
http://www.research.ibm.com/cme/components/components.html#Frameworks

Rule-based Documentation 2 RELATED WORK

language can be used to locate points in source code that are similar with
respect to the observed concern. But participants in a collaborationare usu-
ally not similar. They share a common collaboration task, but each member
has different distinct responsibilities and behavior.

Pointcut languages are not intended to fetch points that together form
a common collaboration task, so “there is no general-purpose mechanism in
AspectJ to relate different join points” [EMO04] to specify a whole collabo-
ration. Special purpose predicates such as cflow (respectively cflowbelow)
are able “to go beyond a single join point” [EMO04] but this is not that
powerful and comprehensible. Since we have not planed that each single
comment holds his own source code query, the redundant means to describe
the relation inside collaboration are disadvantageous.

But even if we write a query representing a certain collaboration, the re-
sult of the evaluation of such a query are not class level constructs but a set
of joinpoints. This is adequate when specifying points to weave in aspect
code (the advice), but transformed to documentation: what should be the
subject of the external comment? Is it the following line in program flow
(like when using inline comments)? This mainly a question about granular-
ity. If comments are only virtually connected to source code elements (as
aimed in this thesis) then it is more appropriate to have them attached to
the entire collaboration member construct (such as entire classes, methods,
fields and so on) instead of single points.

In conclusion, pointcut query languages do not really meet the require-
ments of this work, since they are not intended to reflect collaboration
consisting of different members adequately.

2.2.4 Graph based approaches

A linear textual notation is usually hardly accessible to machines, because
their logical build-of is not directly observable and depends on the chosen
programming language.

Since source code documents are based on a strict structure (syntax), it
is possible to analyze such documents and build up more abstract represen-
tations, which are called Abstract Syntax Graphs (in short ASG). ASGs
normalize the source code and represent their elements and relation in a
graph representation. The former hidden structure behind a software unit
now becomes more visible/accessible to humans and machines too.

This enables a better reasoning, since finding a pattern in source code
can be transfered to finding a pattern of nodes and edges in a graph repre-
sentation.

Software refactoring tools, such as Fujaba 1 strongly base on this con-
cept. To document a software architecture, the Fujaba tool-suite uses “addi-

1abbr. for From UML to Java And Back Again; Available at http://www.fujaba.de

16

http://www.fujaba.de

Rule-based Documentation 2 RELATED WORK

tional nodes to enrich the ASG with information gathered during analyses”
[Wen03]. To enable the identification of certain patterns, an a-priori specifi-
cation of the consisting sub-patterns to find is required. These specifications
are given by graph transformation rules consisting of a left side (the premise)
that is a graph representation of the pattern to find, and a right side (the
conclusion) that is the same pattern enhanced with annotation nodes that
will be added to the final ASG. These transformation rules can be applied
on the software projects abstract syntax graph. So, matching subgraphs of
the software project become annotated by additional notes identifying the
members of a certain pattern.

The whole process is based on a common principle in the field of pattern
matching, starting with a bottom-up strategy that significantly decreases
the search space for a following top-down investigation. So phase 1 tries
to iteratively find presumably occurrences of a pattern in the graph, which
will be closer inspected in phase 2 by means of a decomposition identifying
and annotating the participating parts. The whole analysis execution is
depicted in figure 5.

6

results, adjusts the patterns to address perceived deficiencies and

reapplies them until a satisfactory outcome is achieved. To support

this process the engineer needs a tool that applies the patterns to

the source code involved and displays the results obtained.

To devise a tool that meets this requirement we adopt a threefold

strategy. Firstly, we minimise the scalability problems mentioned

in Section 1 by adopting the best available analysis algorithm.

Secondly, we adapt this algorithm to deliver useful results

incrementally rather than on completion. Thirdly, we involve the

reverse engineer in the analysis process, to avoid unnecessary

computation of unwanted analysis results.

4.1 The basic analysis algorithm
Pattern-based design recovery is a deductive analysis problem

where patterns, or rules, are repeatedly applied to a representation

of the source code to arrive at the most complete characterisation

of the code permitted by the rules. Pure deductive analysis

algorithms typically apply the rules involved level by level,

bottom-up1, according to their natural hierarchy, and produce

useful results only when analysis is complete. Results from other

researchers, such as [Wil96] and [Qui94], suggest that a reverse

engineering tool providing fully automatic analysis based on this

approach cannot scale for larger software systems.

Where patterns are defined as graph transformation rules, as in our

case, graph transformation systems are the natural choice for

implementing the tool. However, the scalability problem also

applies to graph transformation systems such as Progres [Zün96]

or AGG [AGG], which apply the rules in an arbitrary sequence

usually determined by the internal data structures used.

FUJABA, in contrast to other graph transformation systems, only

applies rules given a context, normally one object in the graph.

While this is a restriction to the original theory of graph grammars,

it has been shown not to be a problem in practical application. Its

advantage is that it reduces the runtime complexity of the rule

matching algorithm to polynomial size, whereas the original sub-

graph matching problem is NP-complete [Meh84]. For more

details we refer to [Zün96] and [FNTZ98].

By adopting FUJABA as the platform for our tool, we therefore

reduce the problem of scalability compared to systems using

standard approaches to deductive analysis. For the reverse

engineer, however, this does not necessarily solve the performance

problems involved.

4.2 Adapting the analysis algorithm
Although FUJABA reduces the computational complexity of

analysis, a fully-automatic tool based on FUJABA is still

undesirable, as the results are made available only when analysis is

complete. Given that reverse engineering is an iterative process,

such tool behaviour does not lead to an efficient overall process.

Suppose, for example, our 1N_Delegation pattern does not include

the method body check shown in Figure 5. The resulting false

positives manifest themselves early in the analysis, but the reverse

engineer has to wait until analysis is complete to recognise them.

For reverse engineering, therefore, a semi-automatic process is

likely to be more effective, in which useful intermediate results are

produced and the engineer is allowed to interact with them, either

to add information and request that analysis continues or to revise

the rule definitions and restart analysis.

To support such a process, the analysis algorithm itself must

produce intermediate results useful to the engineer as early as

possible, and be amenable to interruption and resumption without

loss of results to date. Since the results most useful to the engineer

are those produced by rules at the highest levels in the rule

hierarchy, we adopt an analysis algorithm which combines a

bottom-up strategy and a top-down strategy. Note that the

algorithm affects only the execution sequence of patterns and does

not violate their formalization as graph transformation rules.

To define the algorithm, the dependency hierarchy of the rules is

levelled, such that each rule has a level number. A rule depending

only on objects in the initial ASG gets number 1. A rule depending

on other rules, i.e., whose definition includes annotations created

by other rules, gets a higher number consistent with the natural

topological order of the rules. Rules included in cycles concerning

their dependencies get the same level number and are marked as

recursive.

Figure 8 shows a snapshot of our analysis algorithm. The grey

rectangle at the bottom represents all objects in the ASG. The

black oval identifies an annotation already created by bottom-up

analysis (with links to the objects annotated) while grey ovals

represent a top-down analysis in progress. Directed arcs indicate

the scheduling sequence of the rules. Variables at the arcs represent

objects passed to the scheduled rule as context.

Bottom-up strategy

After parsing the source code to create the ASG, the analysis starts

in bottom-up mode. Initially, all ASG objects schedule level 1

rules, i.e., those depending on ASG objects only. Scheduling only

level 1 rules initially is sufficient to ensure that all necessary rule

applications are eventually considered. It avoids many top-down

failures that would otherwise occur, because the information

1. In comparison, pure top-down approaches starting with top-lev-

el rules in the topology hierarchy are only of theoretical interest,

because of the search-space implied. Even when a specific rule

is identified for application, without an adequate starting context

its top-down application is impractical.

Composite

1N_Delegation Association

Reference

c1, c2 c1, c2

ASG

c1.attrs, c2

i:Inheritance

 Figure 8. Sample analysis execution

g

i

c2.attrs, c1

g:Generalization

Reference

Strategy

:...:...

c1:Class c2:Class :...

super

super

sub

sub

Figure 5: the bottom-up and top-down execution on a composite pattern
(taken from [NSW+02])

It is possible – even desirable – to use a semi-automatic approach
where FUJABA integrates the reverse engineer by allowing him to halt the
execution and correct some immediate results by hand. This leads to better
results.

Regarding the needs of our proposed tool, this approach does not fully
met the requirements. There is a lot of effort required to initialize the
reasoning procedure (for example: specifying graph transformation rules).
In addition, there is no concise textual notation and third party tools are
usually required to graphically model the patterns to document.

17

Rule-based Documentation 2 RELATED WORK

2.2.5 Ontology based approaches

The term ontology is originated from philosophy, where it is the study of
being or existence. It is used in information systems to represent the knowl-
edge of a domain (namely the universe of discourse) by describing their
objects and relations in a declarative formalism [Gru93]. By giving an ex-
plicit specification of a phenomena using a specific vocabulary, the system
under study becomes (more) interpretable by machines, thus allowing some
reasoning about it.

Describing the concepts of ontologies in detail is beyond the scope of this
thesis. A comprehensive introduction into the area ontologies can be found
in [Usc96]. But so far, it is sufficient to know that an ontology consists
of a hierarchy of classes representing real world concepts, properties that
are attached to the concepts to model relationships between them, and
individuals that are concrete instances of the concepts.

The idea of describing phenomena by the means of ontologies can be
applied on the domain of software patterns, which are usually communicated
informal (by graphical diagrams or even literally). Some fundamental work
in this area was done by Jens Dietrich and Chris Elgar in [DE05]. They
propose to formalize the structural aspect of design patterns by the means
of an ontology language.

Class level artifacts (the M1 in OMGs Meta-layer Architecture) instanti-
ates pattern participants. Hence, for conceptualizing a design pattern using
an ontology language, Dietrich and Elgar proposed an extended meta level
stack. They contribute a layer above M1 (application classes), called PDL
(abbr. for pattern description layer) that formally describe pattern par-
ticipants using classes (here concepts; not M1 classes) and their relation
among each other using properties. By doing so, they employ concepts and
restrictions defined in another meta level above PDL which they called ob-
ject design ontology layer (in short: ODOL). ODOL describes the nature
of a pattern thereby forms the language used in the PDL. In their work,
[DE05] used the Web Ontology Language (in short: OWL) as description
language, so pattern definitions may underly a good physical distribution.
“Furthermore, patterns refining other patterns can also refer to them as
network resources” [DE05].

Detecting a pattern is about finding a set of instances from the concepts
defined in the pattern description layer (PDL). Towards a technical realiza-
tion, Dietrich and Elgar proposed to map the defined ontology of software
patterns to predicate logic formulas to allow reasoning about patterns by
means of derivation rules. “Therefore, the task of detecting design patterns
in software is reduced to finding a fact base for the above mentioned rule”
(citation [DE05]).

Similar to the considerations taken inside the section about graph based

18

Rule-based Documentation 2 RELATED WORK

approaches, the effort to build up such a reasoning facility is not negligible.
For instance, external tools such as graphical ontology editors are required,
because the textual RDF notation is not that comprehensible. In addition,
since RDF is a XML derivate, written documents are not concise and would
bloat the documentation document.

2.2.6 By using a logic programming language

Source code reasoning using a logic programming language is an emerged
field within the last years. A lot of work such as [HOA+06, Vol01, KHR07,
MK06] was contributed during that period. Actually, it looks very promising
to formal describe a pattern by defining relationships between the elements
of the observed collaboration in a declarative way. Domain knowledge is
given by a set of definite clauses – called Horn clauses – which can “be
written equivalently in the form of an implication” (1). The right-hand side
of the expression in (1) is called premise and the implication end (left-hand
side) is called conclusion. Such expressions allow to deduce new knowledge
from exisiting one. A clause without a premise is known as a fact and can
be understand as assertion about a relevant piece of the world [CGT89].

p0 ← p1 ∧ p2 ∧ ... ∧ pn (1)

Since we are not interested in boolean values but rather on relations
between elements, we need to transfer the clause in (1) from propositional
logic to predicate logic. So each literal p0 to pn will be a relation (i.e.
predicate) over the individuals of a domain. The schema of predicate logic
can be transfered to code reasoning if we understand the individuals of
the observed domain (the project source code) as a subset of the program
constructs (such as concrete classes, interfaces, methods, fields and so on)
and predicates as a mean to represent the structural relationships between
these individuals. The described approach of merging a logic programming
language with a standard object oriented base language is often known under
the term logic meta programming.

To allow reasoning, a theorem prover requires a representation of the do-
main in form of a logical fact base that can be constructed by the means of
structural analysis. Technically, the nodes of an abstract syntax tree repre-
sentation get translated to corresponding predicates that together constitute
the fact base.

The whole procedure of identifying a pattern in source code using a
logic programming language is depicted in figure 6. The schema describes
the architecture of the Pat System, developed by Krämer and Prechelt in
[KP96]. In their work, they use C++ as a base language and Prolog to
describe and query for patterns. The two programs P2prolog and D2prolog
transfer entries from a pattern catalogue (P) respectively design artifacts
from the given source code (D) to a Prolog representation.

19

Rule-based Documentation 2 RELATED WORK

C++

source

code

structural
analysis D2prolog

PROLOG

rules

PROLOG

facts

PROLOG
query

pattern
instance
candidates

OMT
pattern
diagrams

P2prolog

Figure 6: process of recognizing a pattern by means of a general purpose
logic programming language (taken from [KP96])

A query is a set of predicates, defining criterions for participating in-
dividuals. Each predicate imposes a relationship on the individuals of a
domain that occur in the result-set. Further, inter-relationships (i.e. rela-
tionships between predicates) can be defined using the concepts of variable
binding. In this scenario, a query is a logical representation of the structure
of a software pattern. Each valid variable binding therefor represents an
occurrence of the pattern.

After this general introduction, the following paragraphs examine some
prominent current work gathered by a brief literature research.

LePUS When talking about pattern formalization by the means of logic
formulas, the work of Eden can not be disregard. His declarative language
called LePUS 1 [AHE98], was first introduced in 1997, and is currently
spread through many articles. Some of them ([Bar03]) even state that
”it seems to be the best solution found”. This Architecture Description
Language can be represented in a visual or textual way and is defined in
[AHE98]. Unfortunately, there is no tool implementation known.

However, there are some current projects following the concept of
logic meta programming; amongst others these are Pat [KP96], Inten-
siVE [MK06], CodeQuest [HVdMdV05],JTransformer [SRK07] or JQuery
[Vol01].

So far, this approach seems to well fit the requirements of this thesis. We
have logic variables representing collaboration members, and predicates to
express the relationship between these participants.

2.2.7 Conclusion

In this chapter we have studied different approaches that can be used to
formally describe and query collaborating source code elements. This ex-

1abbr. for: Language for Patterns Uniform Specification

20

Rule-based Documentation 2 RELATED WORK

amination focussed on the static structure aspect of a software pattern.
To determine which approach best fits the demands of our ideas, we have
elaborated requirements during the introduction to this chapter. Each sub-
section refers to these requirements inside a brief evaluation. Now, as we
are finished with the discussion, we resume the facts gathered so far.

First, we considered code annotations using attribute grammars to
markup the collaboration roles. This attempt is very exact, but due it
requires to prior markup programming code adequately, it gains no further
observance.

Thereafter, a rather theoretical approach was considered that describes
elemental parts of a pattern by the means of a formal calculus. By using
this mechanism, more elaborated patterns are described as a build-of of
elemental ones. But, since these elemental building parts of a collaboration
are given, the designed flexibility in choosing an appropriate granularity
is not warranted. The person writing the documentation has not the full
freedom to attach explanations to single class level construct as intended.
Also, based on our efforts, we have not found any tool implementation
following the ideas of the presented formal calculus.

Subsequent, we have noticed that describing a pattern using an ontology
or graph representation is somewhat to laborious for the needs of this thesis.
The efforts, that needs to be taken into account to build up a reasoning
facility (describing an ontology of the pattern respectively formulating graph
transformation rules) are also somewhat too exceeding. Also both do not
provide a concise textual notation allowing to embed the description into
the documentation document.

Finally, we examined the use of a logic programming language that al-
lows to model the relationships of collaboration participants with a set of
predicates. An advantage of this approach is that all pattern members are
unambiguously captures as logical variables. This makes it easy to relate
comments to constituent parts of a collaboration. Also this approach of-
fers a concise and comprehensible notation that can be embedded into the
documentation document.

So we decide to use Logic Programming as our source code query mech-
anism of choice. The forthcoming chapters conceive a concept around logic
meta programming as its foundation and discusses some implementation
issues occurring when transferring the idea into practice.

21

Rule-based Documentation 2 RELATED WORK

22

Rule-based Documentation 3 CONCEPTION

3 Conception

This work addresses the problems of tangled, scattered and non-cohesive
comments in source code that usually accumulates when documenting a
collaboration in source code. These problems were already analyzed in
the problem specification in section 1.1. The fixed relation between inline
comments and the documented element is not able to adequately capture
these phenomena, because of its limited scope and the absent facility to
formally reference related source code. As discussed during chapter 2.1,
a clean separation of both concepts seem be a suitable solution to that
problem. For that purpose, the previous subchapter examined different
approaches that can serve as an intermediate layer between comments and
source code, attending to manage the assignments of source code elements
to documentation entries. Now, as we already defined our coarse aims, it is
time to deep into the internal concepts of this work.

The approach slightly differs from current standards in the area of internal
software documentation that primary aims to document an API or a set of
consecutive statements usually without regarding any relations to concerned
members. Since collaboration seem to be a crucial factor in current software
development, we find that the current focus of documentation should be not
only on sole segregated elements but also on the relationships between a set
of collaborating elements. This may help to gain an overall view of the
architecture of an existing software project.

Conceptually, this thesis combines the ideas behind elucidative program-
ming [Knu84] and the Pat System [KP96]. Elucidative programing, as in-
vented by Kurt Nørmark, already separates textual annotations from source
code. The relationships between both concepts are defined in a separate doc-
ument called Edoc that manages links from source to documentation (dlink)
or from documentation to source (slink) 1. In [NAC+00] one can find out
that:

“An href attribute of the slink tag makes use of a naming
scheme that allows the author of the documentation to address
Java program constructs in an unambiguous and context inde-
pendent way.”

The keyword in this citation is “context independent”. The elucidator is
not able to distinguish between different collaboration contexts in which
the target may occur. Relations of the target to other members are not
regarded. The mechanisms used inside the elucidator aim a very direct
addressing mechanism allowing to exactly allocate a textual hint to a source

1beside there are external links too, which are actually not that interesting

23

Rule-based Documentation 3 CONCEPTION

code artifact without the risk of a false positive assignment. This fits well if
it is desired to address sole elements required when writing tutorials or an
API documentation. However, this directness and the disregarded context
lacks in addressing a pattern of relating elements as desired in this thesis.

For this purpose, a logical description of the pattern to document seems
to be more appropriate for fetching a set of related program constructs. Such
a code exploring mechanism was already introduced in [KP96] 1996. The
Pat System is a facility that uses a common logic programming language
(prolog) to evaluate queries on an object oriented base language.

Within this thesis, a comment is not a first class entity, thus only exists
as a part of a parent documentation entry that covers one collaboration
task. Each such a documentation entry holds a formalization of the whole
pattern that defines all pattern members and their relations among each
other. A source code element qualifies for a comment if it matches a part
of the formal pattern description.

To fade in comments, depending on a certain context (such as the current
cursor position in a source code editor), we just need to scan all registered
documentation entries and select those whose pattern instances intersect
with the current context.

This chapter is outlined as follows. To define the needs or conditions to
meet, we start with a brief requirements schedule, taking account of common
use cases of the proposed tool. We will answer these requirements during
this and the following chapter.

The main contribution of this conceptual examination will be provided
inside subchapter 3.2 that explains the theoretical model underlying the
approach. We will show some similarities to the role model approach that
is eminent when talking about object collaborations.

Section 3.3 refines the consideration of the previous subchapter by gath-
ering a domain model for RuBaDoc; our proposed tool. This conceptual
model gives an insight of all involved entities and their relations to each
other.

Derived from the developed domain model, a language that can be used
to write down such documentation entries will be designed in chapter 3.4.
These documents serve as an interchange format allowing to spread the
written documentation over the project team.

24

Rule-based Documentation 3 CONCEPTION

Finally, we will regard some optimization issues in subchapter 3.5. The
motivation result from the fact that usually only the first matching docu-
mentation entries are particularly observed. However, some entries might
be more important or better fit for the actual context than others. Hence,
it is desirable to sort matching documentations according to their relevance.
For this purpose, section 3.5 elaborates heuristics to determine the relevance
of a matching documentation entry. Based on that rating, resulting entries
can be sorted according their pertinence.

Terminatory to the present chapter, we will give an aggregation of the
ideas elaborated so far in a roundup conclusion chapter 3.6.

3.1 Requirements Analysis

This section lists the goals of the proposed approach that are addressed
during the forthcoming chapters.

1. Obviously the most important requirement is the task of fetching all
relevant documentation entries that are matching the current context.
This should be done in a direct and indirect manner. If a documen-
tation entry covers the current observed element, then we will call
this a direct matching. On the other hand, if an entry addresses an
element that is hierarchical on a higher level to the matching element,
this is called an indirect matching. For instance, such an indirect
matching occurs when retrieving a comment that covers the parent
class or package above the current observed method or field.

2. A pattern usually consists of diverse participants playing certain de-
fined roles. It would be a valuable feature to offer access to all partic-
ipating elements after matching one of them. Additionally, for each
participant, the tool should clarify, why it is actually selected for that
pattern. Beside the manual typed documentation given by the de-
veloper this is a contribution to automatically document the source
code.

3. As already stated, the approach relies on a M-to-N relationship be-
tween source code and relating comments. Hence, it is possible that
there will be multiple documentation entries for a particular context.
This occurs each time a set of collaborations overlap. For this scenario,
some heuristics are required allowing to order matching documenta-
tion entries by their relevance.

4. The majority of current software projects are implemented by the
craftsmanship of a whole project team. Usually there are no ”islands”
that only affect one person, but a lot of interdependencies between
modules inside the software system. This aspect strongly requires an

25

Rule-based Documentation 3 CONCEPTION

interchange format that allows to share the written documentation
inside the team. In turn, this requires a language to formally write
down such documentation to a file that can be shared among the
development team.

5. An important factor concerning the acceptance of the proposed tool
is a proper integration into a common IDE. Besides presenting match-
ing documentation entries, this integration comprises typical CRUD
mechanisms. CRUD is a abbreviation for the four basic functions in
area of data management and stands for Create, Retrieve, Update
and Delete.

3.2 A theoretical foundation

The goal of this work is to properly document source code in context to an
object collaboration. For this purpose, we will need an underlying model
as a foundation to illustrate the concepts of this novel documentation ap-
proach. Class models are a proven mean when describing the structural
aspect of a software system. Because of the class/object duality they are
close to the implementation and primary concern about the objects intrinsic
properties. However:

“One of the distinguishing features of object design is that no
object is an island. All objects stand in relationship to others,
on whom they rely for services and control.” [BC89]

Because class models only provide one structural view, they are not able
to clearly represent the spectrum of different behaviors of an object when
participating in different collaborations. Therefore, we are looking for an
alternative that is on a higher level of abstraction and intended to describe
the collaboration aspect of objects.

3.2.1 The Role Modeling Approach

This section briefly discusses the role model approach that became popular
in the late ‘90s. It shows that class models cannot decompose a complex
system according to certain phenomena such as collaborations properly.
So Reenskaug in [RWL96] proposes to “isolate an area of concern and to
create a role model for it”. The advantage of this separation of concern is
that we get manageable models. “The role model is an abstraction on the
object model where we recognize a pattern of objects and describe it as a
corresponding pattern of roles” [RWL96]. A role is a dynamic view on a set
of objects that has a similar behavior in context to a particular collaboration
task. Furthermore, a role type is the abstraction from a set of roles and
“defines the operations and the state model of the role” (Definition 3-13 in

26

Rule-based Documentation 3 CONCEPTION

[Rie00]). This artifact somewhat corresponds to the relationship between
classes and objects, but occurs on a higher level of abstraction.

To specify such a role type, one can use a notation similar to the one of
figure 7.

41

Yet another example is the collaboration task for notifying clients about state changes of a figure ob-

ject. Clients may depend on the state of the figure object and need to be informed about changes to it.

A previous subsection defines the role types FigureObserver and Subject. This subsection redefines

them in the context of a role model. In particular, their names are adapted to avoid confusion.

Specification 3-8 defines the FigureObserver role model.

rolemodel FigureObserver {

// Manage all dependent objects.
// Notify them about state changes of the figure.

// Dependents must be of type Observer.
roletype Subject {

collection<ref<Observer>> dependents;
boolean hasObserver(ref<Observer> observer);

void addObserver(ref<Observer> observer);
void removeObserver(ref<Observer> observer);

}

// Provide callback operations for subject.
roletype Observer {

void update(ref<Subject> source, ref<Event> event);

}

... Event definition.

constraints {
(*, *) = role-prohibited;

}

... More definition, e.g., associations, cardinalities.
}

Specification 3-8: Example specification of FigureObserver role model.

Figure 3-20 shows the FigureObserver role model.

0..*
Observer

(FigureObserver)
Subject

(FigureObserver)

Figure 3-20: The FigureObserver role model.

As a final example, consider a role model used to pass client requests along a chain of objects. The

client requests are converted into Request objects first, which are then forwarded from one element in

the chain to its succeeding element. A figure object uses this mechanism to notify its parent about a

client request that it could not handle.

Specification 3-9 describes the FigureChain role model:

rolemodel FigureChain {

// Predecessor in a chain of figure objects.
// Provides operation to generically handle requests.
roletype Predecessor {

ref<Successor> successor;

void setSuccessor(ref<Successor> successor);
void forwardRequest(ref<Request> request);

}

// Accept, queue, and dispatch requests.
roletype Successor {

void handleRequest(ref<Request> request);
void handleDeleteRequest(ref<DeleteRequest> request);

void handleInvalidateRequest(ref<InvalidateRequest> request);

}

... Request definition.

Figure 7: Specification of the Figure and Child role in a FigureChain role
model (taken from [Rie00])

Figure 8 presents a graphical notation of the role model specified in figure
7 above. Note that Role constraints are omitted in the specification since
they are currently not that important. A set of all identified constraints
between certain roles can be found in [Rie00] in section 3.3.6.

42

constraints {

(*, *) = role-prohibited;
}

... More definition, e.g., associations, cardinalities.

}

Specification 3-9: Example specification of FigureChain role model.

Figure 3-21 shows the FigureChain role model.

Predecessor
(FigureChain)

Successor
(FigureChain)

0..1 0..1

Figure 3-21: The FigureChain role model.

Please note that these role models are concrete design artifacts, and not design patterns. (They are in-

stances of design patterns.) It is a conscious modeling decision to make the FigureHierarchy role

model have a Client role type, but to omit this role type from the FigureChain role models. These role

models are defined for and used in the Figure class model defined below, where the FigureHierachy

role model is used to configure the object hierarchy at runtime. From the object hierarchy, the object

chain is determined, and no option for chain configuration is given.

The role models Figure, FigureHierarchy, FigureObserver, and FigureChain all generically relate to

figure objects. They are therefore used by the abstract Figure and CompositeFigure classes. In addi-

tion, role models specific to a certain figure class can be defined.

For each concrete figure class like RectangleFigure or UmlClassFigure, there is a role model that de-

scribes the figure specific collaboration with its clients. Also, there is typically a role model that de-

fines how to create a new instance. This leads to role models RectangleFigure and RectangleFigureC-

reation, UmlClassFigure and UmlClassFigureCreation, etc. They are omitted here, because they are

fairly simple, and do not add to the discussion.

3.3.8 Composing role models

It might seem natural to introduce a composition function for role models. Composed role models

would be the composition of smaller role models, which could either be atomic or other composed role

models. OOram, for example, is based on a role modeling composition scheme called role model

synthesis [Ree96]. However, OOram, as originally defined, has no concept of class on the modeling

level.

Role modeling as defined in this dissertation directly takes the step from atomic role models to classes

and class models. I have found no need for intermediate composed role models. None of the case

studies presented in Chapters 6 to 8 require the introduction of composed role models. Therefore, no

such role model composition function is introduced.

Composition is always carried out in the context of a class model, where role types are assigned to

classes, and where the classes provide the composition function to compose role types.

3.3.9 Class model (revised definition)

This subsection revises the definition of class model given earlier. Class models are understood as

compositions of role models, in which classes provide and compose role types defined by the role

models.

Figure 8: A visual representation of the role model specified in 7 (taken
from [Rie00])

Describing a collaboration task corresponds to identifying all related role
types and defining associations between them. Such a composition is called
a role model. This model is a good foundation for our examinations. The
following section describes similarities and thereby introduces the ideas of
our work on top of these concepts.

3.2.2 The Documentation Model of RuBaDoc

After the brief introduction into the area of role modeling, this section
discusses the relations of that concepts to our proposed approach.

The contribution of this thesis is a concept of an approach that allows to
document program constructs in context to a collaboration. A documenta-
tion entry covers a set of similar object collaborations by commenting their

27

Rule-based Documentation 3 CONCEPTION

participants. As mentioned, such a set of similar object collaborations can
be conceptually described with a Role Model. Hence, there is a correspon-
dence between a documentation entry and a Role Model. In particular, a
documentation entry covers a Role Model.

Each Role Model consists of a set of role types specifying the qualification
of the participants. In particular, it specifies methods and properties of
the roles that are involved in the collaboration. The idea of this thesis
is to document the constituent parts of a role type specification. Each
documentation entry consists of a set of comments covering elements of a
role type specification (such as certain role methods and role fields) of a
corresponding role model. It works on a finer granularity than sole roles by
describing their constituent parts; but not the role itself.

Consequences: As discussed, this work conceptually bases on the con-
cepts of the Role Modeling approach to document the collaboration aspect
of a software system. Therefore, the following consequence can be derived.

Comments are independent of class level contructs: In [Rie00], one
can read that “Role types are defined independently of classes, be-
cause their primary purpose is to show how an object behaves within
a specific collaboration task.” Since the targets of the comments are
parts of a role type specification, this independence also applies in our
scenario. A comment does not directly covers one particular program
construct in source code, but parts of all objects that conform to (or
play) this role. Thereby, program constructs become transitively doc-
umented when applying a Role Model on a Class Model (called Class-
Role Model). This indirect relationship allows us to avoid scattered
comments that were captured during the problem specification in
section 1.1. Such a normalization applies a single source principle,
since one single comment simultaneously captures all similar mem-
bers of a collaboration task in source code.

Comments may overlap each other: On the other hand; “An objects
behavior is defined by the composition of all role types of all roles it
may play” [Rie00]. Hence, objects participate in a non-empty set of
overlapping collaborations (Definition 3-16 in [Rie00]). This aspect is
important for documentation too. Consider documenting a compound
design pattern whose constituent parts overlap so that some class level
constructs occur inside multiple patterns simultaneously (playing dif-
ferent roles). Obviously — if documented adequately — each such a
class level construct requires a different explanation depending on the
actual considered collaboration. Since comments are attached to role
type parts of a role model, they might also overlap without affect-
ing each other when applying role model synthesis. This documen-
tation superposition avoids tangled comments, since explanations

28

Rule-based Documentation 3 CONCEPTION

in source code need not to be (physically) merged to a agglomerated
comment covering different contexts.

Comments relate each other: As same as “Role models are the place
where role types are defined” [Rie00] - a documentation entry envelops
all comments of the collaboration members. So this parent entry has
knowledge which targets are currently covered with documentation.
Because of this, each comment is in a position to reference participat-
ing collaboration members, by inspecting his parent documentation
entry.

Due to the fact that comments are related via the parent documenta-
tion entry, they document a collaboration in a cohesive manner.

These three considerations demonstrate the adequacy of the role model
approach as a theoretical foundation for this thesis. It solves the three
problems identified in the initial problem specification in section 1.1: non-
cohesive comments, scattered comments and tangled comments. Figure 9
provides a schematical view over the concepts discussed so far.

Figure 9: the RuBaDoc approach in concept

29

Rule-based Documentation 3 CONCEPTION

The thick black arrow on the left side exemplary shows how source code
is transitively documented using a formal description of the collaboration
as a glueing medium. In the example, there are two collaborations that
conform to the specified Role Model. Hence, both are covered with the
comments given in the Documentation Entry (exemplary ”role field 1
comment” in figure 9).

After presenting the commonalities of both approaches, we are now con-
cerned about the differences. Actually, someone might argue that our tool
is intended to serve as an instrument for a role model documentation. This
assumption does not entirely apply, since the core concept of the role mod-
eling approach – namely the role – is missing in our documentation model.
Still, we can select all parts of a class definition that are important to the
actual collaboration context, but there is no further subsuming from these
parts to a role. Hence, we are not able to attach comments to a role as a
whole. However, since a role is an aspect of one class, it can be indirectly
represented as the sum of its constituent parts, where each of them belong-
ing to the same class definition. This idea could be visually supported by
grouping collaboration participating elements (like certain methods,fields,
parameter and so on) that belong to the same class.

Employment: For a better understanding, a practical example from
[Rie00] was chosen to describe the concepts presented so far. The study
describes a yet simple FigureChain role model that was previously depicted
in figure 7 on page 27. The listing comprises two role types – namely
Predecessor and Successor – that can be used to model a chain of figure
objects. We now demonstrate how our documentation approach employs
the introduced model in practice.

To document a collaboration that follows such a figure chain, a formal-
ization describing the structural aspect of the collaboration is required to
serve as a query parameter. Such a formalization unambiguously captures
the members of the collaboration task using identifiers (here logical vari-
ables). For example, one of such an entity represents the role method
handleRequest() in the Successor role type and another might repre-
sent the role field successor inside the Predecessor role type. The person
writing the documentation now needs to connect these entities to each other
using object relationships. For example, the previously mentioned successor
field references a certain Successor type.

After having captured all participants, one is now in position to relate
a comment to each of these related program constructs. For instance, one
might want to attach a textual explanation to the handleRequest() role
method to document the intent or the responsibilities of that constituent
part of the collaboration. It is important to memorize that the subjects

30

Rule-based Documentation 3 CONCEPTION

of the comments are the parts that made up a role type specification not
concrete parts in the source code. However, through applying a role model
on a class model (called a class-role model), source code elements are doc-
umented transitively. This approach is more efficient compared to a direct
Code–Comment relationship, since we are now able to cover a (possible
huge) set of program constructs playing a similar role within one particular
collaboration. Further, there might be multiple instances of that particular
collaboration inside the projects source code, that all becomes automatically
documented by the same documentation entry.

In a first conclusion, the role model approach is well suited to describe
the basic ideas of that thesis, but was not fully adopted as an underlying
model, due to the absent representation of the Role itself.

3.2.3 Formal describing a collaboration with DataLog

Role Models are important at the analysis phase of an information system
development. They provide an adequate mean to specify collaborative be-
havior that domain experts can easily validate, before implementing them
into source code. However, regarding the common phases of a software
project life-cycle, our approach plays in a different (later) point of time.
Usually, internal software documentation occurs parallel to the implemen-
tation phase or even after that. Therefore, the collaboration aspects are
already implemented in source code and are not that clearly identifiable.

Now, the main task is to recover these collaboration tasks inside the
source code, to retrieve the concrete participating elements covered by the
explanations. For that purpose, we demand a mechanism that allows us to
evaluate queries on the source code level. As already discussed, this in turn
requires a formal description of the considered collaboration as a parameter
for such a query. Concerning the discussions taken in the previous section,
this formal description ideally correspond to a role model; hence consists of
a set of role type specifications and their relationships to each other.

Some fundamental studies were accomplished in subchapter 2.2. At that
time, Logic Programming seems to be best suited to formalize a collabo-
ration adequately. Actually, we demand no further skills in the area of
logic programming such as recursion or the concept of goal reductions. In
particular, collaborations are not modeled using a set of rules but only by
exactly one query. This implies that no collaboration definition builds on
top of an other. Facts constituting the fact base for reasoning are generated
automatically by the employed query facility (here JQuery).

Since in our scenario, a query is just a set of relations between collabo-
ration participants, we restrict us to use DataLog to express collaboration
tasks. DataLog originates from the database community and “is in many

31

Rule-based Documentation 3 CONCEPTION

respects a simplified version of general Logic Programming” and “has been
developed for applications which use a large number of facts stored in a
relational database” [CGT89]. In contrast to [CGT89] we do not demand
that facts need to be stored in a relational database 1.

Compared with popular logic programming languages such as Prolog,
DataLog “has a purely declarative semantic”. Due to the procedural se-
mantics of Prolog, the termination of a recursive program depends strongly
on the order of the rules and literals (in the rules) [CGT89]. The following
enumeration emphasizes the DataLog character of the mechanism employed
in this work.

Each fact base predicate is ground The facility that structural ana-
lyzes the project source code and extracts design artifacts solely pro-
duces ground facts, i.e. facts which do not contain any variables.
These entries form a Extensional Database which is partly stored on
the file system. Each such an entry is exactly one predicate that rep-
resents a relation between individuals (program constructs) gathered
during the structural analysis. When expressing a query, one com-
poses a set of these fact base predicates typically by using variables
(in order to be general). The appendix A lists all such core predicates.

No use of compound/complex terms as arguments of predicates
When formulating a query, no complex predicates such as p(f1(1), 2)
are allowed. In addition, we do not need constructs such as Lists.

Queries guaranteed to terminate A query to recover occurrences of a
certain pattern can be defined by a set of core fact base predicates
(i.e. predicates that were used to specify facts in the knowledge base).
Since there is no recursion, the query might satisfy (if all variable sub-
stitutions are compatible) or not, but at least terminates after a finite
amount of time. However, the employed reasoning facility contributes
some “useful predicates that have been derived from the core fact base
predicates using rules.“2 Considering the rule definitions of these de-
rived predicates, their purpose follows convenience reasons, since they
mainly subsume a set of predicates without using recursions. There
are only 3 predicates namely child+, subtype+ and implements+ that
using recursion to specify that an element is in a hierarchy of an other.
Due to the nature of the base language, there are certain stratification
restrictions preventing that these queries won’t terminate.

The order of predicates is irrelevant When formulating a query one
need not to care about the order of the predicates. Furthermore, the

1However, there are currently approaches such as [HOA+06] using a relation database
for source code reasoning

2http://jquery.cs.ubc.ca/documentation/appendix2.html

32

http://jquery.cs.ubc.ca/documentation/appendix2.html

Rule-based Documentation 3 CONCEPTION

employed reasoning facility reorders predicates in order to optimize the
query evaluation time. Since predicates are automatically reordered,
there are no control structures that were available in Prolog. This
underlines the purely declarative character of DataLog.

Now, as we have briefly introduced a mechanism that is able to solve the
task of mining collaboration participants, we want to discuss how DataLog
can be used to reflect the concepts captured in chapter 3.2.1. The core
concepts of such a query are predicates (relations), individuals (elements of
the domain) and variables as a placeholder for the second. We have already
discussed, that there is obviously a correspondence between variables and
the parts a role type specification consists of. A variable represent a set of
class level constructs that have a similar behavior in context to the described
collaboration. Each valid variable binding therefor represents a particular
occurrence of that role model inside the observed project workspace.

If an object needs (wants) to act as a certain role, it must fulfill the
specified requirements. So concrete elements of the object model must cor-
respond to the ones of the role type specification. Transfused to the concepts
of a DataLog query, this conforms to the process of binding a variable to
a concrete individual. Hence, individuals are represented by a subset of
all elements appearing inside the application model (like concrete classes,
methods, fields and so on) of the observed project.

Finally, we are using predicates to express a subset of the relations that
make up an object collaboration task. These relations include common
associations such as extends or calls. A detailed listing can be found in
the appendix A.

3.2.4 Conclusion

This section introduced the base ideas of our proposed approach to ade-
quately document the collaboration aspect of a software system. Conceptu-
ally, our work bases on the role modeling approach as an established mean
to describe object collaborations. Further, we use DataLog as a mechanism
to formalize and recover collaborations in source code.

Terminatory to this chapter, the properties of the relation between code
and documentation will be explicitly highlighted.

Direction The Code–Comment relation is unidirectional and only relates
a textual comment to source code. Otherwise, retrieving all comments
for one particular source code fragment requires an iteration over all
registered entries of the documentation repository to look for inter-
sections.

Targets Conceptually, targets of the relation are a subset of the elements
of a role type specification. Later, when merging classes and roles to a

33

Rule-based Documentation 3 CONCEPTION

class-role model, an architect attaches roles to classes. These classes
must fulfill the requirements specified by the corresponding role type.
Parts like methods or fields in a class definition must match those
defined in a role type specification. Hence – considered transitively –
targets are a subset of the elements of a class definition. The indirect
relation between code and comments was previously depicted in figure
9.

From a more practical point of view, the set of possible targets strongly
depends on the chosen query facility. This environment is responsi-
ble to offer access to the abstract syntax tree of the given software
project. It does so by transforming nodes and edges of that syntax
tree to logical fact base predicates. This procedure is crucial in deter-
mining the addressable targets of a workspace. Every item or relation
that was not transfered to a fact base representation is obviously not
addressable for documentation.

The set of different sorts that can be identified in source code cor-
responds somewhat to the set of the unary core predicates from the
chosen logic (meta) programming language. Appendix A provides a
full list of all known core predicates of the chosen TyRuBa/JQuery
query language1. As observable, the list primary comprises of inter-
face level constructs that are primary concerned about the program
structure. Unfortunately, besides method calls there are no further
statements identifiable, hence not comment-able.

In particular, as reported in [KHR07], it is not possible to adequately
describe a pattern that relies on loop statements to interact with a
set of associated objects. Also, our approach does not qualify to doc-
ument algorithm implementations, since the statements that build up
the single operations are not addressable. For that purpose, inline
comments are obviously more suited.

Multiplicity Roles are independent of objects and can be ‘played’ by dif-
ferent objects that fulfill the specified requirement. Hence, a comment
for a role part impacts all elements playing this role.

Otherwise, “A class defines a non-empty set of role types” (Def. 3-16
in [Rie00]), so classes may participate in different collaborations play-
ing different roles. This is a result of composing collaborations. The
bureaucracy pattern presented in[Rie98], for instance, merges several
GoF design patterns 2 whose constituent patterns overlap. In particu-
lar, the Manager class plays three distinct roles (Mediator in Mediator
pattern, Successor in a Chain of Responsibility pattern and Observer

1list taken from http://jquery.cs.ubc.ca/documentation/appendix2.html
2namely Observer, Mediator, Composite, Chain of Responsibility

34

http://jquery.cs.ubc.ca/documentation/appendix2.html

Rule-based Documentation 3 CONCEPTION

in an Observer pattern), hence if documented adequately demands (at
least) three different explanations.

Combining both considerations, we will get a M-to-N multiplicity be-
tween the elements from the source code and comments from the doc-
umentation repository. The following subchapter further presents all
identified relations in more detail.

3.3 Domain Model

Footing on the documentation model presented in section 3.2, this section
dives more into the internals of our conceived approach. To do so, a domain
model identifying and relating all involved entities was elaborated.

Since we want to focus on the relationships between these concepts, an
Entity Relationship Diagram representation following a CHEN notation was
chosen. The final diagram is depicted in figure 10

Figure 10: A Domain Model of RuBaDoc

The following explanations are structured according to the order of the
relations R1 to R10 in figure 10. Each of the following considerations will
cover one particular relationship by presenting involved entities and addi-
tionally discussing the relation-multiplicities.

35

Rule-based Documentation 3 CONCEPTION

R1 To bound the search domain, we are applying the concept of so called
Working Sets to represent the domain of the observations. The term is
originated from the Eclipse IDE and can be understand as a container
for source code documents 1 (multiplicity N). It is possible to manage
many working sets (multiplicity M) and to choose one as a foundation
for a documentation (dashed line).

In figure 10, the term ‘Source Code Element’ represents one concrete
language concept instance that is a program construct inside the ob-
served Working Set. This work only considers languages following the
object oriented paradigm, since the different relationships between ro-
gram constructs are used to define the collaboration to document. In
other paradigms, relations between language concepts are usually not
that powerful and important as in OO.

R2 We have already mentioned that we apply DataLog as a reasoning mech-
anism. Therefor, the queries that select program constructs for com-
ments are not evaluated directly on source code but on a logical rep-
resentation — the fact base. The mapping from source code to fact
base predicates is very important, since it determines which targets
can be possible attached with comments. Technically, fact base pred-
icates can be constructed by the means of a structural analysis. This
will be done by traversing the abstract syntax tree (AST) represen-
tation of each source code document and transforming (a subset of)
its nodes and edges to logical predicates. The N-to-M multiplicity
results from the use of n-ary predicates such as class(X) (n=1) or
derivedFrom(Sub,Sup) (n=2).

R3 A Query (or a Goal) logically describes a certain collaboration struc-
ture by defining relationships between collaboration involved elements
using a set of predicates (multiplicity M).

R4 In order to be general, a Query employs Variables that may become
substituted by an theorem prover when evaluating the query. If there
exists a compatible variable substitution, the collaboration occurs in
the Working Set and each variable assignment represents a collabora-
tion member. As mentioned in section 3.2.2, each collaboration mem-
ber is a program construct that corresponds to a constituent part of
an object role.

R5 After describing the targets of the comments and the inference mech-
anism, we now want to introduce the structure of a documentation
document. A Documentation is a repository for Documentation En-
tries (1-to-N multiplicity) and covers a certain ”Working Set” (dashed

1Since whole documents are not important, the relation between documents and con-
taining source code elements is subsumed into R1

36

Rule-based Documentation 3 CONCEPTION

line). This entity is unique, and at any time, there is only one such a
repository instance existent.

R6 A Documentation Entry covers an object collaboration task formally
described by (exactly) one logical Query. This entity is the central
concept of this work that gets visualized each time the editor con-
text (i.e. the current cursor position) intersects with the (compatible)
variable substitutions of the related Query.

R7 A Documentation Entry can be documented as a whole using one single
Comment. This explanation is intended to describe the intent of the
collaboration without regarding the participants of the pattern.

R8 The virtual Pattern Occurrence entity represent a compatible variable
substitution of the Query that describes the structure of the collabora-
tion. If there are multiple variable assignments possible, then we might
have detected different pattern instances or a role part of a particular
collaboration can be played by multiple program constructs (different
pattern occurrence). In practice, we do not distinguish between both
cases, since this requires further work on subsuming results. Also
it is hard to distinguish if a detected occurrence is also a different
pattern instance. Consider, for example, the well known Observer
pattern that defines a loose coupled relation between a Subject and
an Observer role. Each distinct matching Observer defines a different
pattern occurrence (since different class are intended to play the Ob-
server role) whereas a different matching Subject additionally defines
a further pattern instance. Since we do not care about association
multiplicities when formalizing a collaboration, it is somewhat hard
to distinguish between both cases. However, in practice, this is not
dramatic since comments are attached to parts of a role type specifi-
cation and are therefor independent of concrete pattern instances or
occurrences.

R9 This relationship describes a particular variable binding. The N vari-
ables employed by the predicates of one logical Query are related to
concrete source code elements in a way that satisfies the Query. Each
such a variable binding relation corresponds to exactly one Pattern
Occurrence.

Technically, for a Documentation Entry a Pattern Occurrence is the
only medium that allows access to the source code elements it cur-
rently covers.

R10 Relation R10 is responsible for relating comments to source code ar-
tifacts. On a closer look, a comment for a participant is invariant
between different collaboration occurrences, since the intent of this
element stays the same. Therefore, the assignment of comments (R10

37

Rule-based Documentation 3 CONCEPTION

in figure 10) was separated from the assignment of the actual source
code positions (R9) of a collaboration participant. This results in two
different mappings that share an identical key set. The key set con-
sists of the names of the used logical variables inside the collaboration
query. This form of a normalization allows us to vary both artifacts
independently and employs a single source principle, since one single
textual comment covers all source code elements playing the specified
role part.

3.4 Documentation Language

Within the previous Domain Model we introduced and discussed all involved
entities and their relation in more detail. Footing on that considerations, we
now want to conceive a language to write down documentation according
to that model. These documents can be consulted by the proposed tool.
Therewith, we met the 4th requirement formulated in section 3.1 by pro-
viding a specification for an interchange format. This allows developers to
spread their written documentation in the project team.

A good starting point for that goal is to look back on the domain model
on figure 10 and identify the entities that need to be specified by the doc-
umentor and therefore need to flow into our documentation language. For
that purpose, this discussion is aligned to the structure of 3.3.

• Obviously a Working Set must be specified since it defines the universe
of discourse. But the documentation need not to be dependent of a
certain Working Set. Furthermore, there might be documentation
entries covering general collaborations. So it is sufficient to leave this
determination open until tool startup. At tool runtime, the developer
may decide which Working Set he actually wants to have covered
with documentation. Therefor, the Working Set is not a part of the
proposed documentation language.

• Source Code Element and Fact Base Predicate are already specified
by the chosen programming language respectively the mechanism that
transforms them into logical facts. There is no need for a documentor
to adjust these entities, so both are omitted.

• Obviously, the pattern defining Query must be provided be documen-
tor, because it (indirectly) specifies the targets of the given comments.

• The Documentation entity only serves as a container for all entries and
is already represented as the whole documentation document that is
written with the conceived language.

38

Rule-based Documentation 3 CONCEPTION

• Documentation Entry and Comment obviously need to be specified
by the author by the means of the proposed language.

• Pattern Occurrences are derived from a Query at tool runtime. As a
matter of course, they are not present in the conceived documentation
language.

Now, as all involved entities are identified, we can further work on the
design of our documentation languages. In theory, every formal language L
follows a specific grammar G – or in other words, G as a metalanguage of L
and describes L. EBNF 1 is another language that can be used to define G.
The contribution of this chapter is the definition of G — a (context free)
grammar of the proposed documentation language.

To define how a valid documentation document will look like, we will use
a graphical EBNF representation describing the grammar of our language.
The graphical representation is somewhat better to read as a (more) cryp-
tical textual notation. Figure 11 is a straight forward conversion of the
entity relationship diagram previously seen on figure 10. We just transfered
the Documentation, Documentation Entry, Query and Comment entities
to corresponding EBNF non-terminals preserving the relation multiplicities
identified in chapter 3.3.

Figure 11: Documentation language in a graphical EBNF notation

Let us now further consider the Query nonterminal occurring in the
second lane. There is no EBNF expression given, which further defines
how valid queries are specified. The reason for this fact is, that we prefer
to embed a rule definition that is given by a chosen logic programming
language. So the Query nonterminal can be unsterstood as a placeholder

1abbr. for: Extended Backus Naur Form

39

Rule-based Documentation 3 CONCEPTION

for a particular query language definition. However, an EBNF definition for
the Rule language employed in this work can be found in [DV98].

Due to the fact that EBNF is a language to define context free grammars,
it is not possible to express the important relationship between a variable
inside a rule 1 and its relating comment inside the ”Comments” nonterminal.
Therefor, the following paragraph explains the semantics by instantiating
the grammar to a simple example. Consider, for instance, a simple Proxy
design pattern given by a structure according to figure 12.

Figure 12: A Proxy pattern in a UML class diagram notation

To properly document all occurrences of such a structure in the
source code, one need to identify all pattern participating parts and their
corresponding relations between each other. Listing 1 gives a first example
for the usage of our proposed language.

1 Proxy [interface (? Subject),method (?Subject , ?AbstM),
2 implements (?Proxy , ?Subject),
3 implements (? RealSubject , ?Subject),
4 method (?Proxy , ?PM), method (? RealSubject , ?RSM),
5 signature (?PM, ?AbstM), signature (?SM, ?AbstM),
6 field (?Proxy ,? Delegate),type(?Delegate ,? Subject),
7 calls (?PM, ?SM, ?)]
8 {
9 * : "Provide a surrogate or placeholder for

10 another object to control access to it";
11 Proxy : "maintains a reference that lets the proxy
12 access the real subject %RealSubject %";
13 Delegate :"A reference to the real subject
14 %RealSubject% in a proxy pattern ";
15 RealSubject :" defines the real object that the proxy
16 represents ";
17 Subject :" defines the common interface for
18 RealSubject and Proxy ";
19 PM : "This method inside %Proxy% makes a proxy call
20 to %RealSubject %";

1even if we former assigned an expression to Rule nonterminal

40

Rule-based Documentation 3 CONCEPTION

21 RSM : "This method gets proxy calls from %Proxy %";
22 }

Listing 1: An example documentation entry - written according to grammar
presented in figure 11

Regarding listing 1, two distinct parts are cognizable. Starting with the
”Comments” area surrounded by the curly braces (lines 8-22); it is well
cognizable how one can easily attach textual explanations to the different
collaboration participants. The relationships between these participants
are preliminarily specified inside the ”Query” section between the squared
brackets on lines 1 - 7. In this work, TyRuBa is used as the logic meta
programming language of choice. A list of TyRuBa specific predicates and
their semantics can be found in the appendix A. By a convention, variables
need to be marked with a question-mark prefix. It is not necessary that
every employed variable in the ”Rules” section must be documented in the
following ”Comments” area (for instance, we have not covered the method
inside the parent interface). The Kleene Star ” * ” , occurring in line
9, is a special construct to provide a general comment that will cover all
collaboration participants in source code and can be used to provide some
general informations about the collaboration independently from its current
structure. This corresponds to the relation R7 identified in section 3.3 that
presented a domain model of the proposed approach.

Another interesting aspect is the possibility to refer to another partici-
pating element inside a comment by just using the role part name wrapped
between two percentage signs. At tool runtime, these placeholders become
automatically substituted with the current bounded source code element
with respect to each particular pattern occurrence.

In the example, the given pattern structure definition is rather general,
since it describes the pattern structure solely by its relations. However, the
documentor can easily confine the result set of pattern occurrences by us-
ing some more explicit criterions. For example, by appending the predicate
name(?RealSubject, Display), all given comments are only assigned to
collaboration participants, whose proxy delegates to a class named Display.
Even further, it is also possible to use a regular expression as a name pat-
tern. So by using re name(?RealSubject, /Display$/) as an additional
predicate, the query engine fetches all patterns having a concrete subject
ending with ”Display” (e.g. MobileDisplay). Since, TyRuBa internally uses
the Jakarta Regexp 1 library, the re name(?Elem, /RE/) is a really powerful
instrument to adjust the generality of a documentation entry.

1http://jakarta.apache.org/regexp/

41

http://jakarta.apache.org/regexp/

Rule-based Documentation 3 CONCEPTION

Usually, more general rules without any explicit constraints (such as class-
or method names) result in a larger result set. Thereby, the probability
that comments overlap increases. Motivated from this issue, the following
subchapter primary cares about the scenarios when there is more than one
comment per observed program construct available.

3.5 Rating of documentation entries

When querying the repository for matching documentation entries, it might
often be the case that multiple documentation entries are available for the
same context. Since we are thankful for every given hint and comment —
at a first look — this might not be a problem. However, this situation
is quite not optimal, since some documentation entries are more important
than others but may be overlooked if they are not highlighted. Similar to a
Web-Search engine, only the first listed results are particularly observed.

In such scenarios, it might be helpful for a developer to obtain all match-
ing documentation entries ordered according to their relevance. This in
turn requires a ranking heuristic for a rating procedure that evaluates ev-
ery matching collaboration. Hence, in this chapter we want to elaborate a
yet simple rating mechanism, that assigns relevance-points to all matching
documentation entries that are used as a sorting criterion.

A similar discussion was already taken in [Tan03]. The paper presents a
tool called XSnippet that mines for sample code (called snippets) depending
on the current context. They report that “ranking heuristics are critical to
ensure that the best-fit code samples appear as the top snippets”. They
distinguish between two distinct categories which are presented within the
following sections.

Figure 13: A Taxonomy of Ranking Heuristics

3.5.1 Context Independent Heuristics

Here, only the general (static) properties of the elements (to be ranked)
without any relations to the matching context are considered. In [Tan03]
these properties are “Snippet Length” and “Frequency of Occurrence”. In
our work, both approaches are employed — but in a somewhat modified

42

Rule-based Documentation 3 CONCEPTION

way since the context of code snippets differs slightly from the one of docu-
mentation. Additionally, a further property was gathered during the work
on this section.

Ranking by Frequency of Occurrence Regarding the quantity of oc-
currences of a pattern inside the search domain as a relevance criterion
is “a common notion, used in many diverse domains” [Tan03]. Con-
sider, for example, a very general documentation entry that matches
nearly every context, then this entry should be ranked below a more
special one that describes a seldom pattern.

Ranking by Comment Length In our approach, the most extensive
comment (regarding quantity of characters) that matches the con-
text is higher rated as others. This idea is based on the assumption
that longer comments usually provide more informations than shorter
ones.

Ranking by Rule Specificity A lot of knowledge about the relevance of
a given documentation entry can be gathered from it collaboration
query that structural describes the pattern. We have actually identi-
fied two influences on that Grade of Specificity.

The first one is concerned about the chosen predicates. Regarding the
core predicates of the employed logic programming language, some
relations describe an element more specific than others. Primary
the name(?Elem,?Name) respectively re name(?Elem,?NamePattern)
1 and new introduced rbd(?Elem, ?SourceMarker) (to explicitly ad-
dress special marked program constructs) predicates allow a very def-
inite pattern specification.

The other factor regards the predicate coverage of the employed logi-
cal variables. Since every predicate imposes a relation on the involved
elements, the more occurrences we count of a certain variable in differ-
ent relations, the higher is the Grade of Specificity for that variable.
The overall index can be calculated by dividing the amount of predi-
cates through the amount of distinct variables employed in a pattern
query.

By combining both ideas, one can determine an index that seems to
be an adequate sorting criterion.

3.5.2 Context Sensitive Heuristics

So far, only the static properties of a documentation entry are observed.
However, the grade of matching to the actual context remains uncovered.

1re stands for regular expression

43

Rule-based Documentation 3 CONCEPTION

Obviously, these fields of heuristics are more important than the ones dis-
cussed in the previous section. During a brief analysis, two distinct ap-
proaches are elaborated.

Ranking by Hierarchical Path In this work, it has been discussed how
to define comments for source code elements in a collaboration. Re-
trieving a comment that matches the context, however, was not yet
covered. Concerning our approach, we have chosen to make comments
hierarchical, in a way that a comment for a particular element also
holds for all its containing elements 1, thus building a cascade. Con-
sider, for example, a textual explanation for a certain class — then
this comment should also fade in on every containing element such as
fields or methods and so on, since they are parts of the documented
class. This meets the first requirement we set up at the initial re-
quirements report in chapter 3.1. A motivation for this decision was
to increases the probability that there is a comment for a certain
source code element available.

Regarding the relevance aspect, items that are fetched indirectly
through a cascade down the hierarchy are usually less relevant. Con-
sider, for example, a comment for a parent package and another that
exactly covers one particular field matching the context (the cursor
position inside the editor), then the package comment is obviously
less relevant as the field comment and should be ranked below.

Ranking by Context Specificity Similar to the same discussion in the
section about Context Independent Heuristics, this approach also cal-
culates a Grade of Specificity but here only for the matching context,
which is internally represented as a logical variable bound to that
context. If we filter out all predicates employing this variable, we are
able to calculate a Grade of Specificity on that subset analogously to
considerations taken in section Context Independent Heuristics.

Now, as a catalogue of different ranking heuristics was elaborated, the im-
portance of each ranking rule need to be assessed to provide better results.
Since the relevance of a documentation cannot computed exactly and addi-
tionally depends on the intents of the documentation writer, the following
consideration are quite informal and based on common sense ideas. Because
of this fact, the proposed procedure can be regarded as an optimization but
not as a solution for the present problem.

Tansalarak et. al in [Tan03] already reported that “context-sensitive
heuristics provide better ranking for the best-fit code snippets than the
context-independent heuristics.” This assumption should be also preserved
when providing relevance points for documentation entry.

1subtree of the AST representation with the matching node as its root element

44

Rule-based Documentation 3 CONCEPTION

Obviously, it is meaningful that a context matches directly and not
through an parent element like a parent package or class. So, we decide
to assign ten points to every documentation entry that fetches in a direct
manner. Second, the Grade of Specificity of the context matching program
construct inside the pattern role flows in by a factor of two.

Regarding context independent approaches, the documentation entry
holding the longest comment for the current context additionally receives
two points. Ranking the amount of pattern occurrences is not that easy
because there might be significant variations in these amounts. Therefore,
entries are ordered by their occurrence count and – based on this – divided
into five buckets. Subsequent, they are rated from one up to five points
according to their position in that bucket order. Finally, the calculated
Grade of Specificity amount of the collaboration rule gets added to the
overall relevance score.

3.6 Conclusion

This chapter conceived a novel approach in the area of internal software
documentation allowing to document source code in context to a collabo-
ration on the interface level. By using an established model in the area of
object collaboration, we have introduced our ideas in chapter 3.2.2. Tech-
nically, the approach is based on a separation of programming code and
textual comments and uses a formal pattern description to apply a loose
couple relation between both concepts.

All involved elements and their relations to each other are conceptually
introduced using a domain model as presented in section 3.3. Based on
that model, the subsequent chapter derived a language definition allowing
to write down documentations following the ideas of this work. Finally,
some optimization aspects are discussed inside section 3.5 by elaborating
a yet simple heuristic that can be used to order matching documentation
entries by their relevance.

Footing on these considerations, the following chapter will design and
implement a prototype as a plug-in for a common IDE.

45

Rule-based Documentation 3 CONCEPTION

46

Rule-based Documentation 4 TOOL IMPLEMENTATION

4 Tool Implementation

To actually benefit from the new possibilities of this novel documentation
approach, this chapter cares about turning the concepts elaborated during
the previous chapter into practice. The goal is to directly assist the de-
veloper when browsing and writing code with a source code editor, so we
choosed to implement the tool as a plug-in for the Eclipse IDE which can be
regarded as a de factor standard environment (not only) for Java develop-
ment. In addition, the platform is known for its good extensibility through
the plug-in concept.

This chapter covers the tool implementation and integration by outlin-
ing some particularities, discussing some important design decisions and
presenting the features of the final tool. The final plug-in itself is named
RuBaDoc, which is an abbreviation for Rule Based Documentation.

For an introduction, the first section briefly presents the Eclipse platform
as the technical foundation of the proposed tool.

4.1 The Eclipse Platform as a foundation for RuBaDoc

“Eclipse is a universal tool platform - an open, extensible IDE for anything,
but nothing in particular”1.

A center concept of Eclipse is the plug-in, which can be understood
as the fundamental building block. To cite from the project website 2:
“Eclipse is the sum of its constituent plug-ins”. Due to the fact that all
plug-ins have to follow a certain specified assembly, extending the platform
is somewhat comfortable. Further, Eclipse itself highly eases the procedure
of writing such extensions with a plug-in as well. The plug-in development
environment (in short PDE) is an environment that generates a bunch of
scaffold documents by using a set of forms prompting for all relevant plug-
in information. This eases the process of writing a plug-in manifest that
defines the plug-in environment such as dependencies, used platform exten-
sion points and the functionalities that this extension contributes to the
platform. Hooking into Eclipse is achieved through the concepts of exten-
sion points that allow a loose coupled connection between the platform core
and the custom plug-in code. Eclipse exposes a lot of different extension
points that can be extended or customized.

A detailed overview about available extension points and the Eclipse
architecture is somewhat beyond our scope, so that we now want to leave
this introduction and further care about the usage of the given mechanism.

1taken from http://www.eclipse.org/articles/Article-UI-Guidelines/

Contents.html on 2007-11-20
2http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html

on 2007-10-11

47

http://www.eclipse.org/articles/Article-UI-Guidelines/Contents.html
http://www.eclipse.org/articles/Article-UI-Guidelines/Contents.html
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html

Rule-based Documentation 4 TOOL IMPLEMENTATION

4.2 The RuBaDoc Eclipse Plug-in

This whole section is primary concerned about examining behavioral and
structural issues of RuBaDoc and how to properly hook into Eclipse to offer
access to the documentation repository. In general, there are two sorts of
concerns consisting of visualizing and managing (create, retrieve, update,
delete) documentation entries.

In general, the RuBaDoc extension builds on top of the JQuery Eclipse
plug-in 1 developed at the University of British Columbia (http://www.
ubc.ca). JQuery is an environment for source code queries based on a
logic programming language called TyRuBa and is required to realize the
Code–Comment relation. Within this prototypical implementation, it is not
planned to make this query mechanism exchangeable. This could be a topic
for future work.

This chapter is outlined as follows. At first, we discuss the behavior of the
tool with respect to non functional requirements such as performance. Sub-
sequent, we will care about structural aspects of the plug-in by elaborating
and discussing an application model as a basis for a later implementation.
The class diagram also shows how the whole architecture is decomposed
into packages and explains their particular responsibilities. Section 4.2.4 is
concerned about the interchange format of RuBaDoc and primary discusses
how to consult documentation documents written according to the grammar
defined in section 3.4. The last four subchapters mainly care about visible
aspects of the documentation plug-in and how they are realized using the
appropriate Eclipse extension points.

4.2.1 The Consistency of the Code–Comment Relation

The idea of this thesis is to fade in documentation entries context sensitive.
In conclusion every context change event forces an update of the currently
visualized entries. By term ‘context’ we understand the program construct
currently covered by the cursor in the editor of the IDE. Typically, the
cursor position in the editor is transient and a context change event occurs
rather frequent. Since the relation between comment and source code is uni-
directional from comment to code, checking for matching entries requires to
iterate over all registered documentation entries to look for intersections.

A documentation entry matches the context if at least one of it variable
binding – that satisfies the goal – directly or indirectly (i.e. hierarchi-
cally) equals it. To diagnose a ‘context match’ of a documentation entry,
the collaboration defining query need to be executed in order to fetch the
compatible variable bindings representing program constructs involved in
the collaboration.

1available at: http://jquery.cs.ubc.ca/

48

http://www.ubc.ca
http://www.ubc.ca
http://jquery.cs.ubc.ca/

Rule-based Documentation 4 TOOL IMPLEMENTATION

Due to the fact that our approach bases on Logic Programming, such a
query is not evaluated directly on source code, but on a logical representa-
tion of it which is called the fact base. This fact database only represents
one snapshot of the project workspace. Hence, every source code modifi-
cation need to be pushed to the fact base in order to be consistent. In
our scenario, one single source code document usually comprises a lot of
logical facts that need to be represented in the fact base. So, big software
systems result in enormous fact bases, that become unhandy for reason-
ing procedures. Because of the dependency of a query from the fact base,
reevaluating a query requires a prior refresh of the fact base. Considering
the perceptible time and memory resources required by both procedures,
it is technically not realizable to evaluate collaboration queries every time
documentation entries are requested.

Therefore, compromises concerning the consistency aspect of the Code—
Comment relation need to be taken, since this seems to offer the biggest
optimization potential. Or in other words, the relation need not to be up-to-
date at any time. In particular, a deferred approach will be applied where all
documentation entries are initially charged with their corresponding source
code mappings.

In conclusion to that, each time source code gets manipulated by the
developer, some documentation entries may become inconsistent in a way
that they cover collaborations that no more exists. Therefore the Code–
Comment relation need to be refreshed on certain triggered events. To
look for such events, this section examines common use cases and thereby
additionally covers the behavior of the tool.

Figure 14 depicts an UML Use Case diagram that is a foundation for
the following discussions.

Figure 14: Use Case Diagram of the working scenario

Subsequent, we address each interaction scenario and describe the inter-
nal behavior of the RuBaDoc plug-in.

49

Rule-based Documentation 4 TOOL IMPLEMENTATION

Initialization At first, we will discuss the startup protocol of the extension.
In short, this use case is mainly about building a fact base, loading
documentation documents automatically from hard drive and fetching
all pattern occurrences internally (i.e. evaluating all queries).

The whole initialization process is somewhat time consuming and
memory intensive. It will start by doing a structural analysis trans-
forming the whole specified working set into logical facts. Subsequent
to this transformation, the tool identifies and reads in documentation
files following a certain file type convention. Our designed suffix is
.rbd which is an abbreviation for rule based documentation.

The tool is designed to read in all found .rbd documents and merges
them internally to one big repository. This makes it possible to struc-
ture files by covered packages, language or something else. In addition,
a desirable side-effect of this procedure is, that it allows developers to
write their own documentation to their contributed modules. Later,
other team members can easily include these explanations by just
placing the file in their work directory.

After parsing all entries and building up an internal representation,
the query rule of each documentation entry of the repository becomes
evaluated. In this deferred approach, all pattern occurrences will be
pre-retrieved from the working set source code and attached to the cor-
responding documentation entries at startup. Later, when responding
to a context change event, it is only need to consider this cached
occurrences and thus avoiding a cost intensive query evaluation. A
drawback of this decision is that tool startup time will increase some-
what.

Editing/Exploring Source Code Editing and exploring source code
may trigger a context-changed event that demands adapted comments
inside the documentation view. As already mentioned, by the term
context we refer to the element currently covered by the editors cur-
sor. In our implementation, qualified names are chosen to represent a
context internally. These URIs locate a certain source code construct
by its hierarchical path. Every time this context changes, all currently
visualized documentation entries need to be updated.

Due to the fact that a context-changed event occurs rather frequent,
we will work on cached results. Hence, code that was written after a
cache refresh does not affect the documentation. This is not dramatic,
since these changes might be present in the short term memory of
the developer and therefore demand no further explanation. In the
opposite case, deleting code results in orphan documentation, that
indeed waste memory but usually does not mislead the developer.
However, it is problematic if code was deleted or edited (in a way that

50

Rule-based Documentation 4 TOOL IMPLEMENTATION

breaks the rule of the collaboration) that was previously a unique part
of a certain collaboration. In this case, other participants are covered
with documentations about a collaboration that no more exists.

For such scenarios, we will demand an action that forces a complete
refresh of the whole fact base prior to a reevaluation of all Code–
Comment relations. A partial refresh of only the affected relations
is unfortunately not possible, since the impact of a particular source
code modification on a documentation entry is not easily predictable,
respectively only by a query reevaluation.

Adding a new Documentation Entry Besides of writing new docu-
ments using the language specified in chapter 3.4, we decide to provide
some higher level tools that are more ergonomic than sole text files
laying on the file system. In particular, we think about a form dialog
that prevents common mistakes and supports the task of documenting
by outlining a common path.

Since documentation entries are independent of each other, a refresh
of the deferred occurrences of the other entries is not required after
adding this new entry. Section 4.2.8 further discusses some implemen-
tation issues about the input form dialog.

Editing a Documentation Entry Analogous to the ”New Entry” dialog
described above, there should also be a dialog that makes the proce-
dure of editing documentation entries more comfortable. Considering
the performance aspect of the proposed plug-in, there are two cases
of editing a documentation entry. In a first case, there will be only
changes to the textual explanations or labels. This scenario can be
handled by simply adjusting the objects properties. In a second sce-
nario, when also the collaborations logical rule was modified, we need
to remove all gathered collaboration instances and force a following
rule reevaluation. Because of the independence between different doc-
umentation entries, further synchronization actions are not required.

Within this section, we pointed out different behavioral aspects of the pro-
posed tool. The chapter presented a compromise between consistency (re-
ferring the Code–Comment relation) and performance. The allocation of
documentations to source code needs not to be up-to-date at any given
time. In conclusion, a mechanism is needed to trigger a complete refresh of
these relations.

4.2.2 Architecture model

The following architecture model combines the core model entities, previ-
ously defined in the domain model on figure 3.3, with classes primary con-

51

Rule-based Documentation 4 TOOL IMPLEMENTATION

cerned about environmental aspects (such as visualization, read/store and
so on). The model is structured in layers represented via packages. These
layers are ordered according to their information flow bottom-up. So, com-
ponents (may) depend on information from other components below. The
concrete responsibilities of each package will be discussed afterwards. The
class model depicted on figure 15 provides an overall view over the RuBaDoc
architecture.

This simplified UML class model only shows the core entities that con-
stitutes the tool. There is an amount of other classes that mostly deal with
issues concerning JQuery/TyRuBa, JavaCC, or Eclipse that are currently
not visible and somewhat beyond the current scope. In following descrip-
tion, the tasks and responsibilities of each implemented package will be
reported.

de.tud.inf.st.rubadoc.io The io package is responsible for storing and
reading documentations to respectively from the file system. A facade
object for that facility is DocumentationIO, whose interface exposes
methods to serialize the current documentation repository to hard
disc and also import them back to runtime objects. Other auxiliary
classes, mostly concerned about the parsing procedure, are omitted,
since they are generated using third-party tools. Chapter4.2.4 further
deals with the implementation issues of the documentation parser.

de.tud.inf.st.rubadoc.model The model package consists of the core en-
tities, that were already identified in the domain model in figure 10.
The Query object encapsulates the access to the underlying resoning
facility (here JQuery/TyRuBa). To keep the core model entities small
and clean, we decided to realize additional behavior by external classes
following a Visitor design pattern. The DocumentationRepository
refers to the previously presented Documentation entity, and is imple-
mented as a Singleton, since there should be only one such a repository
at one time.

de.tud.inf.st.rubadoc.rating The rating package is conceptually lo-
cated between the model and controller package and can be seen
as an access port to the result set of matching documentation entries.
The package is concerned about rating documentation entries accord-
ing to their relevance. The aggregate of rated documentation entries
can be uniformly accessed in a desired order via an Iterator.

de.tud.inf.st.rubadoc.controller According to the MVC Architectural
Pattern, the controller packages cares about responding and process-
ing to respectively of events triggered by interactions with the devel-
opment environment. In particular, these events are: changing the
editor context (cursor), adding a new documentation entry, editing or
removing a documentation entry and forcing a rule base refresh.

52

Rule-based Documentation 4 TOOL IMPLEMENTATION

Figure 15: UML class diagram of the RuBaDoc core architecture
53

Rule-based Documentation 4 TOOL IMPLEMENTATION

de.tud.inf.st.rubadoc.gui The gui package is responsible for visualiz-
ing the model objects and additionally provides forms to manipulate
model properties. These classes strongly depend on the Eclipse en-
vironment, thus they implement the exposed extension points. The
concrete display elements are topics of the chapters 4.2.5, 4.2.7 and
4.2.8.

4.2.3 JQuery Integration

In this work, JQuery was chosen as the underlying reasoning environment.
The JQuery language

“Is a logic (Prolog-like) query language based on TyRuBa.
TyRuBa is a logic programming language implemented in Java.
The JQuery query language is defined as a set of TyRuBa pred-
icates which operate on facts generated from the Eclipse JDT’s
abstract syntax tree.” 1

Causes for this decision include:

• JQuery is an Eclipse plug-in too. Hence, some functionality could be
easily reused.

• With a history of (now) six years of continuous release cycles, the
query environment can be regarded as good maintained

• The employed logic programing language TyRuBa implements some
optimizations such as tabling (also known as lemmatization or memo-
ization) 2 which is a kind of a cache mechanism that prevents repeated
executions of already evaluated relations. In addition, TyRuBa is able
to reorder literals in a query and uses indexing mechanisms to optimize
the query execution time.

• TyRuBa is a typed programming language, so it can provide more
comprehensible error messages.

• JQuery is freely available as an Open Source project under a BSD
License.

During the implementation we employed the following ground features
of JQuery:

• The environment to build up a fact base

• The interface to TyRuBa for evaluating a query on this fact base

1taken from http://jquery.cs.ubc.ca on 2007-12-14
2http://www.cs.sunysb.edu/~warren/xsbbook/node2.html

54

http://jquery.cs.ubc.ca
http://www.cs.sunysb.edu/~warren/xsbbook/node2.html

Rule-based Documentation 4 TOOL IMPLEMENTATION

• And finally a trigger-able action that forces a complete fact base re-
fresh.

We do not need all visualization aspects such certain views or dialogs the
plug-in originally contributes to Eclipse.

Further, JQuery was modified to more fit our needs. For the purpose
of collaboration mining one do not need access to the entire AST. So, the
procedure that transforms Syntax Trees to fact base predicates gets modified
in a way to minimize the amount of generated predicates. Minimizing the
amount of predicates results in three desired side effects:

1. Since a lot of nodes are bypassed when traversing the AST, the time
needed for plug-in initialization can be reduced.

2. Less memory resources are required due to the reduced fact base.

3. Queries can be evaluated faster, because there are less predicates to
consider.

Because of the following reasons, these listed predicates will be sup-
pressed:

Marker Predicates All different kinds of markers such as Tasks, Book-
marks, Compiler Errors or -Warnings will be not represented in the
fact base since they do not provide any design information.

Source Locations Due to the fact that the current exact source code po-
sition of an element is a very transient information, the modified pro-
cedure will abandon such information in order to decrease the amount
of fact base predicates

JQuery Labels JQuery additional inserts static textual informations to
the fact base, such as ”method getName() reads name” and similar.
Since these informations can be also derived at a later time when
needed, they will be suppressed. As measured using a project with
nearly 20 kLoCs this reduces the size of the fact base by one-third.

Java Core The procedure should not further index the used JDK libraries.
For example, if someone uses java.lang.String then he is usually not
further interested about structural details of that used class. Also it
makes less sense to document the JDK core files since the source code
is usually not visible.

Besides these reductions, a new core predicate gets added to the lan-
guage. By using rbd(?Elem,?Ident) the documentator is now in a position
to additional specifiy queries using Source Code Markers. For that pur-
pose, the rbd predicate considers doclet annotations following the form of

55

Rule-based Documentation 4 TOOL IMPLEMENTATION

@rbd Ident. Actually, there should be also support for JavaDoc tags in
JQuery, but in the current version the corresponding code is commented
out, due to the JLS31 update. Therefor, we need to implement our own
predicate support. Fortunately, JQuery has already designed special mech-
anism to declare new predicates (specify predicate arity and expected types).
Additionally, to employ the predicate, we need to hook in into the Source
Code AST traversal to absorb the special formated doclet nodes. To explain
the semantics of the new predicate, we will discuss a short example depicted
in listing 2.

1 package de.sample;
2 /**

3 * @rbd SpecialClass

4 **/

5 public class DummyClass implements IDummy {
6 private Node accessPort;
7

8 public int dummy(int b) {
9 accessPort.getChild (1);

10 return b;
11 }
12 }

Listing 2: A simple Java Class

Based on listing 2, it is now possible to cover all collaboration with a
class annotated with SpecialClass. Listing 3 demonstrates the usage of the
new predicate by a simple example.

1 RbdTagCollab [calls(?CallerM ,?Method ,?),
2 method (?Class ,? Method),rbd(?Class ,SpecialClass)]
3 {
4 CallerM : "This method calls a class that is
5 annotated with SpecialClass ";
6 Method : "A method inside SpecialClass that
7 gets a call from %CallerM %";
8 Class : "This is a special class annotated
9 with SpecialClass ";

10 }

Listing 3: Documenting a simple Collaboration using the @rbd tag

Here, covered collaborations are restricted to have a class with a ”Spe-
cialClass” rbd annotation that receives a method call from an other class.
This approach follows the ideas presented in section 2.2.1 and allows a very
strict Code–Comment relation using a unique identifier as a tag value.

To measure the impacts of these changes JQuery was enriched by addi-
tional logging code. To get an insight to the procedure of transforming an

1Java Language Specification, Third Edition

56

Rule-based Documentation 4 TOOL IMPLEMENTATION

AST to logical facts, listing 4 lists a subset of the predicates generated after
consulting the class definition depicted in figure 2.

1 child(de.sample ::Package , de.sample#DummyClass.java::CU)
2 class(de.sample %. DummyClass :: RefType)
3 modifier(de.sample %. DummyClass ::RefType , public)
4 implements(de.sample %. DummyClass ::RefType ,
5 de.sample %. IDummy :: RefType)
6 rbd(de.sample %. DummyClass ::RefType ,SpecialClass)
7

8 field(de.sample %. DummyClass#accessPort ::Field)
9 child(de.sample %. DummyClass ::RefType ,

10 de.sample %. DummyClass#accessPort :: Field)
11 modifier(de.sample %. DummyClass#accessPort ::Field ,private)
12

13 method(de.sample %. DummyClass#dummy(int):: Method)
14 child(de.sample %. DummyClass ::RefType ,
15 de.sample %. DummyClass#dummy(int):: Method)
16 modifier(de.sample %. DummyClass#dummy(int):: Method ,public)
17 methodCall(de.sample %. DummyClass#dummy(int)::Method ,
18 de.sample %.Node#getChild(int):: Method ,
19 "=Proj/src <de.sample{DummyClass.java (25 ,22 ,6)"
20 ::ca.ubc.jquery.ast.SourceLocation)
21 returns(de.sample %. DummyClass#dummy(int):: Method ,
22 int:: Primitive)
23 params(de.sample %. DummyClass#dummy(int):: Method ,
24 [int:: Primitive])

Listing 4: fact base representation of Listing 2

To evaluate the modifications done, a sample project (JHotDraw) con-
sisting of approximately 20.000 lines of code was consulted. Using an un-
touched version, we measured 69.886 generated facts taking 15.716 ms of
time. After implementing the mentioned changes, the JQuery analysis pro-
duces 42.852 fact base predicates taking now 12.957 ms in time. In conclu-
sion, the new fact base is now only 61 percent of the former size and takes
now 82 percent of the time to be build up. However, based on diverse mea-
surements, the time need to evaluate a query on that fact base could not be
decreased. This may be due to the optimization employed in TyRuBa that
may bypasses unneeded predicates.

4.2.4 Documentation Parser

Writing a parser that is able to read in documents written in our designed
language by hand, is error prone and not flexible enough to answer possible
changes that may occur in the future. Instead of a hard coding approach,
we decide to generate our parser automatically, which seems to be a proven
solution.

57

Rule-based Documentation 4 TOOL IMPLEMENTATION

The parser generator of choice is JavaCC 1 that is a popular parser
generator written entirely in Java. The project is available as open source
(BSD license) and has a long history (roots until 1996). In addition, there
is a lot of documentation, tutorials and examples available.

As an input, for the procedure of a parser generation, JavaCC needs (of
course) a grammar that describes the language of the documents we later
want to read in. Such a grammar file defines the relations between a set of
tokens that constitutes our final language, by using the Backus Naur form
(BNF).

In our work, we just transform the visual designed grammar (depicted
in figure 11 on page 39) to a textual notation and merge it with some
additional Java code that is needed to build up an internal representation
of the written concepts. An excerpt from the final JavaCC document is
depicted in listing 9 in appendix B.

4.2.5 Eclipse Documentation View

The context sensitive documentation view is the most important visible
component of the plug-in, because it displays all matching documentation
entries. The view is responsible to visualize the important properties of a
DocumentationEntry object including:

• The name of the documentation entry

• The subject of the documentation (the element that is documented)

• A general comment covering the whole collaboration

• A specific comment that solely covers the current context of the col-
laboration

• A list of collaboration participants (each with a specific comment and
additional informations concerning the relationship between the par-
ticipant and the collaboration)

Technically, the component uses the org.eclipse.ui.views extensions
point and directly inherits from ViewPart. Since their might be multiple
matching collaboration, the informations are packed into Group containers,
so that each one represents one DocumentationEntry.

Possible the most important part of such an entry for the developers
might be the participants list, thus it refers to associated source code po-
sitions by using hyperlinks. This is a major contribution for exploring a
software project consisting of a lot of interdependencies. Besides these hy-
perlinks, the participant explorer component is able to reason about why

1http://javacc.dev.java.net/

58

http://javacc.dev.java.net/

Rule-based Documentation 4 TOOL IMPLEMENTATION

the element is fetched as a participant for the present collaboration. In
particular, it translates the subset of predicates, that impose a relation on
the observed participant, to a natural language. Therefore, besides of the
comments given by the author, the collaboration is able to document itself.

The screenshot on figure 16 shows the documentation view right hand to
the source code editor in Eclipse. Due to the limited page dimensions of this
report, common views such as package explorer or outline are omitted in
the screenshot.

Figure 16: An screenshot of the Eclipse Documentation View

In the scenario depicted in figure 16, the developers cursor currently
covers the Node class definition. So the actual context is de.sample.Node,
which is the qualified name of the selection. Depending on that context
the plug-in retrieves two matching documentation entries; namely an Ob-
jAdapter and a Composite. After the documentation entries name, the
matching element is printed in parentheses. This information is useful since
we also allow an indirect matching (may be a comment for the package
de.sample). The first label inside a documentation group-box describes the
pattern as a whole, whereas the second prints a comment for the matching
role part. Note, how comments are just taken over from the GoF book
[GHJV95]. For the general collaboration comment, the Intent part was
uses, whereas the different members get their explanations from the Par-
ticipants section of the pattern catalogue. In screenshot, the Directory
participant of file system tree structure (recurser node in composite) was
inspected. The documentation plug-in now aggregates all information that

59

Rule-based Documentation 4 TOOL IMPLEMENTATION

can be resolved. These are manual given explanations (the first blue ‘i’) as
well as automatically generated information (the remaining blue ‘i’s) from
the given collaboration query.

4.2.6 Relevance Ordering Mechanism

All pattern matching documentation entries are not directly delegated to
the eclipse view, but indirectly via a relevance iterator. We applied the
homonymous design pattern from the GoF book that “provides a way to
access the elements of an aggregate object sequentially without exposing
its underlying representation” [GHJV95]. The concrete iterator object is
designed to do this traversal with respect to the given relevance points.

The action of providing points to resulting documentation entries is
done preliminary by a set of evaluator objects. The whole mechanism was
implemented with extensibility in mind. New rating mechanisms should
be able to hook in easily to adjust the rating as a criterion for the rel-
evance iterator. Technically, each concrete rating component applies an
Objectifier pattern, thus implementing a common interface that imposes an
evaluate(DocumentationOccurrence occurrence) method. Because of this,
evaluators can be chained and thereby employ a flexible and extensible rat-
ing mechanism.

4.2.7 Documentation Explorer

The documentation explorer is the center administration tool responsible
to browse and manipulate all known documentation entries from the repos-
itory. It uses a two frame layout consisting of a tree structure on the left
side and an edit form for the documentation entry currently selected by the
browsing tree. Besides of editing the objects properties, the form also allows
to force a reevaluation of the collaborations formalization rule.

Figure 17 shows a screenshot of this component after selection a particu-
lar Occurrence inside the tree structure. One can see the resolved bindings
for the used logical variables inside the Query input field above. If we prior
selected the parent documentation entry inside the tree, the view container
provides means to edit the comments for the particular collaboration mem-
bers (logic variables).

4.2.8 Documentation Input Dialog

Writing documentation entries by hand using the documentation language
proposed in chapter 3.4 might be unhandy and error prone. When writing
the documentation by hand, the documentor always needs to keep track
of all used logic variables, to be able to later attach a comment to each of
them. If the role names in the rules section differ from those in the comment
section, the given comments are lost in nowhere.

60

Rule-based Documentation 4 TOOL IMPLEMENTATION

Figure 17: Screenshot of the Documentation Explorer after selecting a con-
crete occurrence from the tree

61

Rule-based Documentation 4 TOOL IMPLEMENTATION

Major to this, the documentor needs instant feedback when writing the
collaborations formalizing rule. For instance, if he uses a predicate which is
not know, the engine should inform the writer as fast as possible.

In addition, we have not planed to force the documentation writer to
learn a new domain specific language. It is commonly known that writing
documentations was never really considered popular.

The procedure of adding a new documentation entry (using the dialog)
is twofold. In a first step, the form asks for general informations; which
are: the collaborations name, a logic rule defining the static structure and a
general comment that covers the whole collaboration. After providing these
informations, the system/dialog is prepared to extract all participants and
automatically generating a new form asking for their particular comments.

Final to this procedure, the plug-in fetches all code fragments qualify-
ing themselves for this new documentation entry. Technically, the query
becomes evaluated and all instances of the described collaboration will be
attached to the created documentation object. In a last step, the item gets
added to the repository and the documentation text file (interchange doc-
ument) becomes automatically synchronized. The final result of the input
dialog is depicted on the screenshot 18.

The screenshot was taken after providing a valid rule, thus he dialog
is now asking for textual explanations for the participating collaboration
members.

4.3 Conclusion

This chapter has discussed some important implementation issues of
RuBaDoc. The result is an Eclipse plug-in that directly assists the de-
veloper on browsing and writing source code. Internally, the extension is
based on the JQuery plug-in that allows to select source code that matches
a logic query. Footing on this facility, RuBaDoc builds an environment for
software documentaion allowing to manage and visualize Documentation
Entries.The next chapter will demonstrate the final plug-in in different case
studies.

62

Rule-based Documentation 4 TOOL IMPLEMENTATION

Figure 18: Dialog for writing a new Documentation Entry

63

Rule-based Documentation 4 TOOL IMPLEMENTATION

64

Rule-based Documentation 5 EVALUATION

5 Evaluation

Final to this work, the concepts elaborated so far will be proven in prac-
tice. In order to evaluate the capabilities of the RuBaDoc Eclipse plug-in
this chapter examines three different case studies. The observed software
projects strongly differ in their LoC (Lines of Code) amplitude ranging from
3 kLoC up to 150 kLoC. As a criterion for this discussion the study will doc-
ument three different collaboration aspects of the software systems under
study and examines quantitative benchmarks as same as the accuracy of
the results.

The first case study comprises the RuBaDoc plug-in itself (only the
core without any third party code). With somewhat above 3 kLoC, the
projects admeasurement is quite small and should therefor not cause any
performance problems. As a second project, the JHotDraw 1 source code
was chosen, since it is known for its pattern richness. Finally, the study
regards the source code of the Apache Tomcat Servlet Container 2, that
was chosen to inspect the scalability aspect of the the underlying reasoning
facility.

During the following experiments, the measurement results were obtain
on a system with the following configuration:

• Apple MacBook Pro (2.2 GHz Core2 Duo Processor) running Mac OS
X 10.5.1

• 4 GB of main memory

• Java 1.5

• Eclipse 3.3 Europa Edition (started with VM argument: -Xmx2048M)

• JQuery 3.1.14 (released: August 30, 2007)

To inspect the source code metrics of the observed projects, the Metrics
Eclipse plug-in (version 1.3.6) 3 was used with the default settings.

5.1 Evaluation Criterions

This section briefly presents the three different collaborations that we want
to cover during the analysis. They range from a rather general collabora-
tion up to a somewhat more elaborated design pattern. Additionally, the
following presentations also act as a tutorial for the proposed documentation
language, since the written documentation entries will be briefly explained.
The meanings of the employed TyRuBa predicates can be found in appendix
A.

1available at: http://www.jhotdraw.org
2available at: http://tomcat.apache.org/
3available at: http://metrics.sourceforge.net

65

http://www.jhotdraw.org
http://tomcat.apache.org/
http://metrics.sourceforge.net

Rule-based Documentation 5 EVALUATION

Object Delegation Collaboration The first use case starts with a quite
simple example. In the scenario, the aim is to document an object collab-
oration where an object gets delegated to another, that in turn invokes a
method on the given object. The whole relationship looks similar to the
Template Class pattern, if we understand the delegated element as a Hook
Object and the invoking method as a member of a Template Class definition.
Additional, all participants that act as a client (triggering the procedure by
calling the delegating method) should also be covered. The final documen-
tation entry is depicted on listing 5.

1 ObjDelegation [arg(?TM, ?D),
2 calls (?TM, ?CM, ?),
3 method (?D, ?CM),
4

5 method (?Client , ?DM),
6 calls (?DM, ?TM, ?)]
7 {
8 * : "In this collaboration a method invokes a
9 method on an object given as a param";

10 D : "This object acts as a Hook in a Template -
11 Hook constellation with method %TM%";
12 TM: "This method works on %D% that was
13 given as a param ";
14 Client: "This is a Client that makes use of a
15 Template -Hook pattern ";
16 }

Listing 5: Documenting a general object collaboration

The query section of the documentation entry (line 1 to line 6) cap-
tures all collaboration involved program constructs as logical variables and
defines their relations to each other. The variable binding concept allows
one to specify inter-relationships 1 between a set of different predicates. So,
the first three predicates are connected via using the ?TM respectively ?CM

variable to express that a method (?TM) with an argument of type ?D (line
1) calls a method on the given argument (line 2-3). Somewhat decoupled,
the last two relations cover the client role of that collaboration that triggers
the procedure by delegating the object.

After having formally described the pattern, comments can be easily
attached to a subset of the logical variables used inside the formalization.
The variables represent parts of an object role that are members of the
observed collaboration. Finally, the plug-in is now in a position to fetch
this documentation entry if at least one of the variable substitutions that
satisfies the query intersects with the current context (direct or indirect).

1a relationship between relationships (predicates)

66

Rule-based Documentation 5 EVALUATION

Design Pattern: Singleton After having discussed a collaboration in
general, this section presents how to cover a concrete Design Pattern known
from the GoF book [GHJV95]. The Singleton Pattern – in its structure
– is rather simple, since it consists of merely on single class. Similar to the
previous entry, additional clients that make use of the singleton instance
should also be covered with comments.

1 Singleton [method (?Sgl ,? GetInst),modifier (?GetInst ,static),
2 field(?Sgl ,?Inst), modifier (?Inst ,static),
3 accesses (?GetInst ,?Inst),returns (?GetInst ,?Sgl),
4 constructor (?Sgl ,? Constr),modifier (?Constr ,private),
5

6 calls(?CliM ,?GetInst ,?), method (?Cli ,?CliM)]
7 {
8 * : "Ensure a class has only one instance ";
9 Sgl : "defines the Instance operation

10 %GetInst% that lets clients access its
11 unique instance ";
12 Inst : "an unique single instance of %Sgl %";
13 GetInst: "a global point of access to %Inst %";
14 Const : "No one instead of %Sgl% itself
15 should call this constructor ";
16 Cli : "This class may act as a client for
17 a Singleton pattern ";
18 }

Listing 6: Documenting a Singleton Pattern

Note, how the key (structural) issues of the pattern are transformed to
a logical representation (references in bold face).

1. A Singleton has a “operation that lets clients access its unique in-
stance” ([GHJV95]) line 1, line 3 and line 6

2. A Singleton has a static field keeping the unique instance line 2

3. A Singleton class has a private constructor: line 4

Design Pattern: Visitor The last example was intended to examine
the regexp engine (Jakarta Regexp) used in TyRuBa. A pattern that relies
to a naming pattern is the Visitor with its accept and visit methods. As
observable, explanations for the collaboration members are just taken form
the Participants section of the GoF book ([GHJV95]).

67

Rule-based Documentation 5 EVALUATION

1 Visitor [implements (?ConcrV ,? Visitor),
2 method (?Visitor ,?VisM),re_name (?VisM ,/^ visit/),
3 method (?Va ,?AccM),arg(?AccM ,? Visitor)
4 (re_name (?AccM ,/^ accept /); name(?AccM ,visit)),
5 calls (?AccM ,?VisM ,?),
6 arg(?VisM ,? Visitable),subtype *(? Visitable ,?Va)]
7 {
8 * : "Represent an operation to be performed
9 on the elements of an object structure ";

10 Visitor : "declares a Visit operation for each
11 concrete class in the object structure ";
12 ConcrV : "implements a fragment of the algorithm
13 defined for the corresponding class of object
14 in the structure; provides the context for the
15 algorithm and stores its local state ";
16 Va : "Defines an Accept operation that takes
17 visitor as an argument ";
18 AccM:"The accept method inside a Visitor pattern ";
19 VisM:"The visit method inside a Visitor pattern ";
20 }

Listing 7: Documenting a Visitor Pattern

The query between line 1 and line 6 can be interpreted as follows:

1. A concrete Visitor implements an interface that specifies some visit

methods: line 1 and line 2

2. A visitable element in a object structure has an accept method with
a visitor as argument type: line 3 and line 4

3. The accept method calls the visit visit method with a visitable ele-
ment as argument: line 5 and line 6

Note that in line 2 and 4 we take some assumption about the concrete
name of the visit and accept method of the Visitor pattern. Obviously,
in general the pattern is not dependent on the concrete names of these
methods. If they are named in a different way, than the collaboration might
be still represent a Visitor pattern. However, this thesis assumes that the
person writing the documentation is the same person that also implements
the source code covered by the written documentation. Therefor, the actor
has some design knowledge and knows about the conventions he applied
when implementing the pattern.

5.2 RuBaDoc Eclipse Plugin

It this scenario, the source code of the final plug-in is documented by itself.
The following evaluation only covers the core modules of RuBaDoc located

68

Rule-based Documentation 5 EVALUATION

Package LoC Size avg Class/Interface size
rubadoc 85 2 42.5
rubadoc.io 1306 13 100.5
rubadoc.gui 965 17 56.8
rubadoc.model 303 4 74.8
rubadoc.controller 210 7 30.0
rubadoc.rating 119 6 19.8
sum 2988 49 61.0

Table 1: Source Code metrics of the RuBaDoc plug-in

inside the de.tud.inf.st package that are implemented during chapter 4.
So, any third party code (such as from JQuery or TyRuBa) does not affect
the considerations. Table 1 provides some source code metrics from the
systems under study.

The superior amount of LoC’s inside the rubadoc.io package results from
the use of a Parser Generator as discussed in section 4.2.4. In particular,
the documents generated by the JavaCC (the Parser Generator of choice)
environment comprises nearly 900 lines of code.

With an overall amount of 2988 lines of code, RuBaDoc can be seen as
a rather small sized software project. As expected, the numbers gathered
during different measurements are quite satisfying. The initial startup pro-
cedure that structural analyzes the whole project Working Set and trans-
forms the containing elements to corresponding fact base predicates takes
less than 3 seconds in time which is not that perceivable. Based on logging
code, the RuBaDoc project source code produces 5.119 fact base entries.
So, every source code line approximately produces 1.7 fact base predicates.
Since most of the statements of a method body (if statements, loop state-
ments, operations, assignments or similar) are not represented in the fact
base, the ratio of ”fact base predicates per fact base representable line of
code” is considerable higher.

After having discussed, some general benchmarks, we now care about
documenting the collaboration presented in section 5.1. As measured during
the case study, the time needed for evaluating one single query on such
a fact base is negligible and far below a hundredth of a second (concrete
numbers can be found in the conclusion section of this chapter). All gathered
occurrences of each of the collaborations match those known so far and
are evaluated manually. In addition, the overlapping of the Visitor and
the ObjectDelegation collaboration was detected and presented in a desired
order by the ranking mechanisms.

The screenshot depicted in figure 19 show a matching Documentation

69

Rule-based Documentation 5 EVALUATION

Entry that describes a Singleton Design Pattern. As observable, the current
Editor context is de.tud.inf.st.rubadoc.DocumentationRepository. Re-
garding listing 6, the context equals with a substitution of the Sgl logic
variable and is therefor fetched from the repository.

Figure 19: Screenshot of the Documentation Entry described in Listing 6

So in conclusion, considering the performance aspect (for small sized
software projects) has turned out satisfactory.

5.3 JHotDraw

A common subject in diverse case studies of current work in the area of
pattern mining is JHotDraw, because it is considered as a “show-case for
good use of design patterns” [MMvD07]. JHotDraw is a graphics framework
for drawing and manipulating a variety of figures. One of the authors is
Erich Gamma who is also known as a member of the ‘Gang of Four ’ 1.

For the following examination, we used version 6.0 beta1, which is
available as Open-Source on the project homepage: http://jhotdraw.org.
Source code metrics for that particular version are presented in 5.3. The
study only covers the core modules of JHotDraw. Packages concerning the
separate JUnit test cases are excluded.

Regarding these numbers, JHotDraw is almost seven times bigger than
RuBaDoc. In contrast to that, with 44.667 generated predicates, the size
of the underlying fact base increases by a factor of 9. So one might assume
that the fact bases grows non-linear with respect to the amount of lines of
codes. But what is more important — regarding usability issues — with a
duration of 12.893 ms the initialization for this project takes only a fourfold
of the times consumed by RuBaDoc (measured in section 5.2). Further, the
time consumed when evaluating a certain query is far below a second which

1coll. synonym for the authors of [GHJV95]

70

http://jhotdraw.org

Rule-based Documentation 5 EVALUATION

Package LoC Size avg Class size
standard 5.295 93 57
contrib 6.823 93 73
figures 3.046 45 68
util 2.830 36 79
application 735 1 735
samples.javadraw 643 10 64
framework 521 5 104
applet 372 1 372
collections 257 6 43
sum 20.522 290 71

Table 2: JHotDraw source code metrics

is somewhat astonishing regarding the complexity of the chosen example
queries and the fact base consisting of nearly 45 thousand entries. This
might be owed to the optimizations such as indexing and caching that are
implemented in TyRuBa.

Evaluating the detection of the patterns previously formalized in section
5.1 “requires knowledge of all pattern occurrences in the target code base”.
Since we do not have this knowledge, we rely on the findings reported in
related work. For the Singleton pattern, for instance, Tsantalis et. al in
[TH06] reported two different instances in JHotDraw.

This equals with the results of our measurements. In particular one of
these is FigureAttributeConstant “for accessing a special figure attribute” 1

and the other is the Clipboard as a heap for transient data. Unfortunately,
[TH06] regards JHotDraw in version 5.1 so we can not guarantee that we
have covered all pattern instances.

There is a similar issue with the Visitor design pattern. For version
5.1, [TH06] reported only one detected instance in JHotDraw. Our study
recovers three Visitor instances. This might be a reasonable result, since
there are actually three distinct classes implementing the FigureVisitor

interface.
In conclusion to this examination, RuBaDoc is capable to document a

mid-range software project up to 20 thousand lines of code.

5.4 Apache Tomcat

Final to this evaluation, a rather big software system should be considered
to study the scalability aspect of JQuery respectively RuBaDoc. For this
purpose, the source code of Tomcat 6 (version 6.0.14 in particular) devel-
oped by the Apache Software Foundation was chosen. “Apache Tomcat is
the servlet container that is used in the official Reference Implementation

1taken from the corresponding JavaDoc entry

71

Rule-based Documentation 5 EVALUATION

for the Java Servlet and JavaServer Pages technologies” 1. Since the pack-
age structure is somewhat more extensive, we currently forego a detailed
metrics listing like done before with RubaDoc respectively JHotDraw. The
overall amount of LoC is 155.118 source lines distributed on 1.376 classes
or interfaces. Transforming the whole project source code into a logical
representation requires 152.023 ms in time, which is critical but barely ac-
ceptable since the procedure of building a fact base usually occurs not that
frequent. Fortunately, it seems that the initialization-time grows linear by
1 ms per LoC, so a project with 1 MLoC presumably takes a quarter of
an hour. But studies such as [KHR07, HVdMdV05] reported that “JQuery
has been found to be unable to work on large systems, such as the Eclipse
sources” 2.

However — considering a project of that size — a developer asking for
documentation often only works on a subset of all the packages to implement
a certain feature. Therefor he can reduce the working set to only cover the
packages he is currently interested in. Doing so, the amount of generated
fact base predicates may become handleable and allows a much more faster
analysis.

Nevertheless, considering the huge amount of 241.664 generated predi-
cates (without Working Set reduction), JQuery satisfies us with an average
of two seconds per pattern query evaluation. Will will later discuss possible
reasons in the conclusion section of this chapter.

Unfortunately, we have no concrete knowledges about all pattern in-
stances in the Tomcat source code. However, the instances detected by our
queries are correct proven by a manual investigation. In particular, three
instances of the Singleton pattern were covered with documentation 3.

Recalling a Visitor pattern in tomcat – however – was not that un-
problematic. The studies reported only one Visitor occurrence in the whole
source code, which seems to be too sparse. Notably the compiler package
was expected to have some more Visitor patterns to handle the node tree
structure. A manual study supports this suspicion because eighteen differ-
ent classes with a visit method that calls an accept method were counted.
This leads to a following fact base investigation.

Obviously, JQuery does not recognize method calls on collection aggre-
gates. Listing 8 gives an example of code snippets that currently can not
be adequately represented.

1cited from http://tomcat.apache.org
2The Eclipse Core 3.1 consists of 974,527 lines of code
3since one of these classes has three different clients we counted five occurrences of the

pattern as formulated in listing 6

72

http://tomcat.apache.org

Rule-based Documentation 5 EVALUATION

1 public void visit(Visitor v) throws JasperException {
2 Iterator iter = list.iterator ();
3 while (iter.hasNext ()) {
4 Node n = (Node) iter.next ();
5 n.accept(v);
6 }
7 }

Listing 8: Documenting a Visitor Pattern

The used list field in line 2 is a non type-parameterized List of Nodes
elements. However, the information that the accept call on line 5 is on a Node

object is absent in the fact base (although line 4 assign the collection element
to a concrete Node type). Due to the missing possibility to detect calls on
collections, a couple of Visitor instances remain uncovered. Obviously, this
applies for all patterns that strongly rely on uniform aggregates such as the
Observer pattern. Hopefully future versions of JQuery might solve this task
of detecting calls on collection aggregates. Since this work only provides a
prototypical implementation to demonstrate the concepts proposed so far,
we currently might see over this limitation.

5.5 Conclusion

This chapter demonstrated the practical usage of the plug-in using three
different sized software projects as a subject for a documentation. For the
discussions, different collaborations ranging from rather general to more
specific patterns were examined. The studies are not representative, because
different projects from different domains with different coding styles are used
to compare the impacts of a varying LoC amount.

The quantitative benchmark results are summarized in table 5.5 and
further visualized in figure 20. As observable, the amount of generated
facts and the time consumed therefor grows linear, hence good scalability
properties can be assumed. This is not surprising since there are no consid-
erable additional expenses when consulting an additional source code doc-
ument. The analysis mechanism extracts design artifacts (such as extends

or implements et.al.) as well as calls and accesses to methods respectively
fields. Transforming these information to fact base predicates is yet fast
compared to initial creation of an AST representation. This phenomena
explains the correlation between the last to columns in table 5.5.

73

Rule-based Documentation 5 EVALUATION

Project LoC FB pred FB time pred/LoC time/LoC
RuBaDoc 2.988 5.119 2.876 ms 1.67 0.96 ms
JHotDraw 20.522 42.852 12.893 ms 2.09 0.63 ms
Tomcat 6 155.118 241.664 152.023 ms 1.56 0.98 ms

Table 3: RuBaDoc/JQuery Initialization Benchmark

The results of the particular query measurements are summarized with
the following three tables. To prevent fluctuations, each scenario was mea-
sured twice (M1 and M2). However, the results seem to be stable since only
a few variations are noted. Within the following tables, Occ denotes the
amount of occurrences of the collaboration in the project source code. This
number needs not to be equal to the amount of collaboration instance be-
cause of the reasons given in section 3.3. As observable, all different projects
report correct (as manual proven) occurrences for the described design pat-
terns. Hence, it looks promising to elaborate a catalogue of commonly used
design pattern that can be activated as a makro. The last column calculates
the query time per kLoC allowing a uniform comparison of the result to the
other projects.

Pattern LoC M1[ms] M2[ms] φM[ms] Occ M/kLoC
RuBaDoc 2.988 30 31 30.5 9 10.207
JHotDraw 20.522 819 823 821 195 40.000
Tomcat 6 155.118 3494 3489 3491.5 1204 22.509

Table 4: Evaluation: Template Class

Pattern LoC M1[ms] M2[ms] φM[ms] Occ M/kLoC
RuBaDoc 2.988 5 5 5 4 1.673
JHotDraw 20.522 18 19 18.5 19 0.901
Tomcat 6 155.118 2022 2063 2042.5 5 13.167

Table 5: Evaluation: Singleton

74

Rule-based Documentation 5 EVALUATION

Pattern LoC M1[ms] M2[ms] φM[ms] Occ M/kLoC
RuBaDoc 2988 5 9 7 2 2.342
JHotDraw 20.522 39 47 43 4 2.095
Tomcat 6 155.118 354 372 363 5 2.340

Table 6: Evaluation: Visitor

Detecting a more general pattern takes significantly more time, since the
query engine can not cut out so many solution paths as in a more specific
one. Since JQuery is able to reorder predicates of a query, the usage of
a name or even re name predicate strongly reduces evaluation time. Such
as in the Visitor pattern, a lot of classes can be disregard, when they do
not have a visit or accept method. As observable in figure 21, detecting a
Visitor pattern takes far below a second of time and has a straight linear
growth with respect to the lines of code of the target source code.

Nevertheless, the results of all query evaluation (concerning a quantita-
tive benchmark) are satisfying, regarding the amount of considerable data.
This might be a consequence improvements implemented in the reasoning
environment. In particular, Kniesel et. al in [KHR07] reported the following
optimizations that are implemented in JQuery’ underlying TyRuBa system:

1. The underlying TyRuBa query engine makes use of tabling to avoid
reevaluation of certain already evaluated predicates. Hence tabling
(also known as memoization or lemmatization) can be regarded a
cache mechanism that might speed up the execution of a query.

2. TyRuBa uses index mechanism to prevent a sequential search for facts
in the fact base. Indices allow a very fast access to a certain informa-
tion.

3. TyRuBa reorders literals to early reduce the search tree of a query
evaluation. The reordering of literals is based on the mode declaration
of the predicates.

Additionally, the adequate amount of available memory might have im-
prove the result. Logic Programming language typically require a lot of
memory when evaluating queries. The 4GB memory of the test system
additionally speed up evaluation time. Measurements on a different test
system with 1.6GHz Core Duo and 1024MB of memory reported a fourfold
of the time to recover Singleton patterns in JHotDraw.

Further, the result depicted in table 5.5 are visualized in figure 20 to
clarify the correlation between the lines of code and the amount of generated
fact base predicates (thick black line) respectively the time consumed to
build up the logical representation accordingly (thick grey line).

75

Rule-based Documentation 5 EVALUATION

Figure 20: Time to build up a fact base with respect to an increasing LoC
amount

Figure 21: Measurements of the execution time of different collaboration
queries

76

Rule-based Documentation 6 CONCLUSION AND FUTURE WORK

6 Conclusion and Future Work

This work presented a novel approach of an internal software documentation
that aims to cover the collaboration aspect of a software system. Under-
standing the relationships between program constructs in todays software
systems is crucial to get an overall view of the internal architecture. As an-
alyzed in the problem specification (section 1.1), current means in the area
of software documentation are not able to adequately cover these aspects of
a software design.

This thesis demonstrated how a separation of source code and documen-
tation aspects resolves the limitations currently prevailing when using inline
comments to document a collaboration. But in contrast to existing work
(such as [NAC+00, Wer07, Bar07]) that already realized such a separation,
we employed an indirect Code–Comment relation that addresses subjects by
their relations to other program constructs not directly by their position.
At tool runtime, Documentation Entries fade in context sensitive. In case
of multiple matching entries, this thesis elaborated a set of ranking heurists
to sort documentation by their relevance.

Conceptually, this work bases on the ideas of the Role Modeling approach
that is eminent when talking about object collaborations. A role model
describes an object collaboration task by specifying the behavior of the
participants and the relationships between them. The idea of this thesis is
to document a role model with a documentation entry that attaches textual
explanations to the involved members. In conclusion, comments only exists
in context to a parent documentation entry. The relationships between Role
Models and the proposed Documentation Model were explained in 3.2.2. We
showed that by adopting this high level of abstraction, class level constructs
become transitively documented when they conform to a documented object
collaboration task. Further, we presented how this flexible Code–Comment
connection solves the problems of tangled as well as scattered comments by
applying an M-to-N relationship between both concepts.

However, Role Models are important at the analysis phase of an infor-
mation system development to specify collaborative behavior that domain
experts can easily validate. But when demanding documentation for a pro-
gram construct, the collaboration is already implemented in source code
and therefore not offhandedly identifiable. Therefore, we showed how to
recover collaboration in source code using DataLog queries. Such queries
formally describe the structure of a collaboration task with a set of relation-
ships (namely predicates) between the involved elements (such as methods,
fields, and so on). A set of these elements that belong to the same class
definition represents an object role. Since we attached explanation to each

77

Rule-based Documentation 6 CONCLUSION AND FUTURE WORK

single element, we are working on a finer granularity than roles by docu-
menting their constituent parts (such as role method, role fields, and so
on). Basing on that model, we have designed a documentation language in
subchapter 3.4 allowing to write down and share explanations.

Furthermore, the concepts formulated in this work are practically proven
by a prototypical tool implementation in chapter 4. The Eclipse Platform
provides an ideal foundation for this goal, because of its open plug-in archi-
tecture. In addition, the Eclipse IDE can be regarded as a de-facto standard
environment (not only) for the Java development. Our extension builds on
top of the JQuery plug-in which is a source code browser that allows to se-
lect program constructs by the means of a reasoning facility based on Logic
Programming.

As a proof of concept, the tool has been tested on documenting the col-
laboration aspect of three different sized software projects. The case study
in chapter 5 demonstrated the applicability or the plug-in. The bench-
marks measured during these examinations approve the qualification of
JQuery/TyRuBa as an underlying collaboration mining mechanism. The
time needed to transform a workspace to a logical representation grows
linear with respect to the lines of code. Due to the diverse optimizations
implemented in TyRuBa, this holds for evaluation too 1.

The goal of the prototypical implementation was to demonstrate the ideas
of this thesis in practice. At its current state, the tool is rather close coupled
to the JQuery respecitvely TyRuBa project. It is considerable to ease this
dependency to employ similar source code reasoning tools such as JTrans-
former [SRK07], CodeQuest [HVdMdV05] or even an own custom imple-
mentation.

In addition, the tool demands some further development to increase its
usability. Currently, documentation only fades in when matching the con-
text, thus only when the cursor inside the editor covers a programs construct
that participates in a documented collaboration. However, it is also helpful
to see all program construct in an opened source code document that are
currently covered with documentation. One can think of special notification
markers next to source line number inside the editor view or even special
symbols in Eclipse’ outline view.

1depending on the written query

78

Rule-based Documentation 6 CONCLUSION AND FUTURE WORK

Furthermore, one can think of an additional built-in documentation cat-
alogue covering the most common collaborations. For this purpose, the for-
mal description of the commented patterns need to be as general as possible
to use them in such a universal way. Doing so, software projects may be-
come documented automatically. In this scenario, developers profit from
the use of RuBaDoc tool even if no one prior wrote a documentation for the
project.

Another important issue, can be seen in the generation of an offline
hypertext-based documentation. At the current time, making use of the
written documentation requires Eclipse and the RuBaDoc plug-in. Never-
theless, one can also think of a hypertext based document that is easier to
spread. Similar to the JavaDoc tool, all documentation entries and their
covered occurrences could be extracted to generate a structured offline docu-
ment. Instead of having class names as a browsing criterion (as in JavaDoc),
one can think of the different collaboration as criterions for the left menu
frame. Doing so, the documentation could be also published on a project
website in is therefor not only accessible for developers using the Eclipse
plug-in.

Development of the tool should be continued, since we personally be-
lieve that there is a significant need for such a kind of software documen-
tation. There are barely no migration costs when documenting existing/le-
gacy software systems afterwards. In addition, the target source code stays
untouched when consulting a project to document, so there is no risk of un-
wanted modifications. Therefor it is never to late to applying this approach
in practice.

79

Rule-based Documentation 6 CONCLUSION AND FUTURE WORK

80

Rule-based Documentation
A BUILT-IN JQUERY SPECIFIC TYRUBA PREDICATES AND

RULES

A Built-in JQuery Specific TyRuBa predicates
and rules

This appendix list all of the JQuery/TyRuBa specific predicates that can
be used to define the relationships inside a collaboration. The following
tables are taken from the Documentation section of project homepage http:
//jquery.cs.ubc.ca/documentation/appendix2.html.

There are two different sorts of predicates. Core Fact Predicates
“directly operate on the facts that are stored in the fact database”. In other
words, these are the same predicates that were also used when transforming
the abstract syntax tree to a logical representation (the fact base). On the
other hand, Derived Predicates (presented in the last table) “are useful
predicates that have been derived from the core fact predicates using rules.”

A.1 Unary Core Predicates

Predicate Argument Type Description
cu(?X) CU ?X is a Compilation Unit
package(?X) Package ?X is a package
class(?X) RefType ?X is a class
interface(?X) RefType ?X is an interface
method(?X) Method ?X is a method
constructor(?X) Constructor ?X is a constructor
initializer(?X) Initializer ?X is an initializer
field(?X) Field ?X is a field
bookmark(?X) Bookmark ?X is a bookmark
warning(?X) Warning ?X is a compiler warning
error(?X) Error ?X is a compiler error
task(?X) Task ?X is a task

Table 7: Unary Core Predicates

81

http://jquery.cs.ubc.ca/documentation/appendix2.html
http://jquery.cs.ubc.ca/documentation/appendix2.html

Rule-based Documentation
A BUILT-IN JQUERY SPECIFIC TYRUBA PREDICATES AND

RULES

A.2 Binary Core Predicates

Predicate Argument
Type

Meaning

priority(?T,?P) Task, String Task ?T has priority ?P

name(?E,?S) Element, String Element ?E has name ?S
child(?Sup,?Sub) Element, Element Element ?Sup has a child ?Sub
extends(?C1,?C2) RefType,

RefType
Class (or Interface) ?C1 extends
Class (or Interface) ?C2

implements(?C,?I) RefType,
RefType

Class ?C implements Interface ?I

throws(?C,?T) Callable,
RefType

Callable ?C throws ?I

type(?T,?T) Field, Type Field ?C is of type ?I
modifier(?E,?S) Element, String Element ?E has modifier (i.e pub-

lic, private, static, etc) ?S
arg(?C,?I) Callable, Type Collable ?C has an an argument

of type ?I
returns(?C,?I) Callable, Type Callable ?C returns Type ?I
signature(?C,?I) Callable, String Callable ?C has signature ?I

Table 8: Binary Core Predicates

82

Rule-based Documentation
A BUILT-IN JQUERY SPECIFIC TYRUBA PREDICATES AND

RULES

A.3 Ternary Core Predicates

Predicate Name Argument
Type

Description

methodCall(?B,?M,?L) Block,
Method,
SrcLocation

Block ?B calls Method ?M at lo-
cation ?L

superCall(?C1,?C2,?L) Callable,
Callable,
SrcLocation

Callable ?C1 makes a ”super”
call to Callable ?C2 at location
?L

constructorCall(?B,?C,?L) Block, Con-
structor,
SrcLocation

Block ?B calls Constructor ?C at
location ?L

instanceOf(?B,?T,?L) Block,
RefType,
SrcLocation

Block ?B performs an instanceof
test for type ?T at location ?L

reads(?B,?F,?L) Block, Field,
SrcLocation

Block ?B reads field ?F at loca-
tion ?L

writes(?B,?F,?L) Block, Field,
SrcLocation

Block ?B writes to field ?F at lo-
cation ?L

param(?C,?T,?N) Callable,
Type, Integer

Callable ?C has an argument of
type ?T as its ?Nth argument

tag(?E,?N,?V) Element,
String, String

Element ?E has javadoc tag ?N
with value ?V

Table 9: Ternary Core Predicates

83

Rule-based Documentation
A BUILT-IN JQUERY SPECIFIC TYRUBA PREDICATES AND

RULES

A.4 Derived Predicates

Predicate Meaning
type(?T) ?T is a Type (a class, interface, or primi-

tive)
element(?E) ?E is an element
likeThis(?E1,?E2) Element ?E1 and Element ?E3 have the

same name, but are not the same object
strongLikeThis(?C1,?C2) Callable ?C1 and Callable ?C2 have the

same signature
child+(?E1,?E2) Element ?E2 has Element ?E1 as one of its

ancestors
package(?E,?P) Element ?E is in Package ?P

constructor(?CL,?CO) Class ?CL declares Constructor ?CO

method(?T,?M) Type ?T declares Method ?M

subtype(?T1,?T2) Type ?T2 is a direct subtype of Type ?T1

subtype+(?T1,?T2) Type ?T2 is in ?T1’s type hierarchy
subtype*(?T1,?T2) Type ?T2 is in ?T1’s type hierarchy (both

can equal)
field(?T,?F) Type ?T declares Field ?F

inheritedField(?T,?F,?Inh) Type ?T inherits Field ?F from Type ?Inh

calls(?B,?C,?L) Block ?B calls Callable ?C at SourceLoca-
tion ?L

staticCall(?B,?C,?L) Block ?T statically calls Callable ?C at
SourceLocation ?L

polyCalls(?B,?C,?L) Block ?B calls polymorphic Callable ?C at
SourceLocation ?L

accesses(?B,?F,?L) Block ?B accesses Field ?F at SourceLoca-
tion ?L

inheritedMethod(?T,?C,?Sup) Type ?T inherits Callable ?C from Type
?Sup

overrides(?C1,?C2) Callable ?C1 overrides Callable ?C2

creator(?C1,?Ctor,?L) Class ?C1 is created by Block ?Ctor at
SourceLocation ?L

84

Rule-based Documentation
A BUILT-IN JQUERY SPECIFIC TYRUBA PREDICATES AND

RULES

implements+(?C1,?I) Interface ?I is implemented by Class ?C or an
ancestor of ?C

re_match(?RE,?S) String ?S matches Regular Expression ?RE

re_name(?E,?RE) Element ?E has a name that matches RegExp
?RE

Table 10: Derived Predicates

A.4.1 Custom Predicates

Predicate Meaning
rbd(?Elem,?Mrk) Element ?E has a source code marker (Doclet)

?Mrk

Table 11: Custom Predicates

85

Rule-based Documentation B THE JAVACC GRAMMAR FILE

B The JavaCC Grammar File

1 SKIP : {
2 " " | "\t" | "\n" | "\r"
3 }
4

5 TOKEN : {
6 < Varchar: ["a"-"z","A"-"Z" ,"%" ,"*"]
7 (["a"-"z","A"-"Z","0"-"9"," " ,"%" ," ," ,"."])* >
8 | < Rules: ["a"-"z","A"-"Z"] (["a"-"z","A"-"Z" ,"0" -"9"
9 ," ," ,";" ,"?" ,"(" ,")" ,"/" ,"." ,"%" ,"^" ,"\"" ,"_","*"]

10)* >
11 | < LDocBound: "{" >
12 | < RDocBound: "}" >
13 | < LRuleBound: "[" >
14 | < RRuleBound: "]" >
15 | < CommentWrap: "\"" >
16 | < CommentSeparator: ";" >
17 | < VarCommentSeparator: ":" >
18 }
19

20 List <DocumentationEntry > Input() : {
21 List <DocumentationEntry > docs =
22 new ArrayList <DocumentationEntry >();
23 Token name ,rules;
24 Map <String ,String > comments;
25 }
26 {
27 (
28 name=<Varchar > <LRuleBound > rules=<Rules > <RRuleBound >
29 <LDocBound >comments = DocElemComments ()<RDocBound >
30 { docs.add(
31 new DocumentationEntry(name.image ,comments.get("*") ,
32 new Query(rules.image),
33 comments
34)
35);
36 }
37)*
38 <EOF >
39 { return docs; }
40 }
41

42 Map <String ,String > DocElemComments () : {
43 String [] comment;
44 Map <String ,String > comments =
45 new HashMap <String ,String >();
46 }
47 {

86

Rule-based Documentation B THE JAVACC GRAMMAR FILE

48 (
49 comment = DocElemComment ()
50 { comments.put(comment [0], comment [1]); }
51)+
52 { return comments; }
53 }
54

55 String [] DocElemComment () : {
56 Token Dvar ,Dtxt;
57 String [] comment = new String [2];
58 }
59 {
60 Dvar=<Varchar > <VarCommentSeparator >
61 <CommentWrap > Dtxt=<Varchar > <CommentWrap >
62 <CommentSeparator >
63 {
64 comment [0] = Dvar.image;
65 comment [1] = Dtxt.image;
66 return comment;
67 }
68 }

Listing 9: JavaCC input-document to generate a parser for the documenta-
tion language designed in figure 11

87

Rule-based Documentation B THE JAVACC GRAMMAR FILE

88

Rule-based Documentation C THE RUBADOC PROJECT-CD

C The RuBaDoc Project-CD

This appendix describes the content and structure of the CD that is attached
to this report. It contains the four main folders: rubadoc, documenta-
tion, report and bibliography that are briefly covered in this section.

The RuBaDoc Plug-In The final Eclipse extension is enclosed as both
– as deployable binary plug-in (bin folder) as well as the browsable
source code (src folder). By placing the .jar from the bin folder into
the eclipse/plugins folder, the extension is ready to use. The package
structure of the src was already explained in section 4.2.2. Additional
required libraries can be found in the lib folder.

The Documentation Due to this thesis, the projects source code was
documented in two different ways. The javadoc folder provides a
conversant API documentation that covers interface level constructs
in a context independent way. The hypertext document was created
by using the javadoc tool that extracts special annotated explanations
from source code.

Based on the work of this thesis, the rbd folder contains a doc-
ument that covers the collaboration aspects of RuBaDoc which
were not adequately documentable with a doclet approach. The
collaboration.rbd file can be consulted by the proposed plug-in to
capture the relationship between certain program constructs.

Together both documents provide an adequate insight to the RuBaDoc
architecture.

The Report All TEXdocuments that are needed to compile this thesis can
be found in the report folder. The bootstrap document is DA.tex that
defines formatting assertions and includes all chapters. All depicted
illustrations can be found in the figures folder. In addition, the SVG
sources for all drawings are enclosed in the figuresSVG folder.

Bibliography The folder contains the pdf-files of the referenced papers
(as far as possible). To clarify the relationship between pdf-files and
references inside the report, the bibliography keys in the thesis are
used as as filenames.

C.1 Initializing The Plug-In

To set up the documentation environment, the RuBuDoc plug-in demands
two parameters. First – but optional – is a documentation document
written in the language designed in section 3.4. The designed prefix for
RuBaDoc documents is .rbd. The plug-in reads in all files following this

89

Rule-based Documentation C THE RUBADOC PROJECT-CD

convention that are in the Eclipse Workspace directory (usually: [UserDi-
rectoryPath]/workspace).

In order to build up the internal fact base, the plug-in requires a Work-
ing Set that bounds the search domain. In Eclipse, Working Sets can be
specified using Window / Working Sets / Edit ... In the Dialog, one
need to create a new Working Set. In the wizard, choose Java as Working
Set type. Following, a form ask for name and content of the Working Set.
Enter RBD as name, and select the sources as preferred. It is recommend
to exclude external library, since these requires perceptible time and mem-
ory resources. Typically, only the source packages are selected as a Working
Set (see figure 22).

Figure 22: Specifying a Working Set for Documentation

90

Rule-based Documentation REFERENCES

References

[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[AHE98] Amiram Yehudai Amnon H. Eden, Yoram Hirshfeld. LePUS -
a declarative pattern specification language. Technical report,
Department of Computer Science, Tel Aviv University, 1998.

[App00] Brad Appleton. Patterns and software: Essential concepts
and terminology. http://www.cmcrossroads.com/bradapp/
docs/patterns-intro.html, 2000.

[Bar03] Aline Lucia Baroni. Design patterns formalization. Techni-
cal report, Ecole Nationale Superieure des Techniques Indus-
trielles et des Mines de Nantes, 2003.

[Bar07] Andreas Bartho. Tutorial creation with deft. Technische Uni-
versität Dresden - Department of Computer Science, 2007.

[BC89] K. Beck and W. Cunningham. A laboratory for teaching ob-
ject oriented thinking. In OOPSLA ’89: Conference proceed-
ings on Object-oriented programming systems, languages and
applications, pages 1–6, New York, NY, USA, 1989. ACM.

[CGT89] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted
to know about datalog (and never dared to ask). IEEE Trans-
actions on Knowledge and Data Engineering, 1(1):146–166,
1989.

[DE05] Jens Dietrich and Chris Elgar. A formal description of de-
sign patterns using owl. In Australian Software Engineering
Conference (ASEC), New Zealand, 2005. Massey University
New Zealand.

[DJ04] Maja D’Hondt and Viviane Jonckers. Hybrid aspects for
weaving object-oriented functionality and rule-based knowl-
edge. In AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development, pages
132–140, New York, NY, USA, 2004. ACM.

[DV98] Kris De Volder. Type-Oriented Logic Meta Programming.
PhD thesis, Vrije Universiteit Brussel, Programming Tech-
nology Laboratory, 1998.

[EMO04] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Point-
cuts as functional queries. In Wei-Ngan Chin, editor, APLAS,
volume 3302 of Lecture Notes in Computer Science, pages
366–381. Springer, 2004.

91

Rule-based Documentation REFERENCES

[Fer04] Len Feremans. Integrating JAsCo artifacts within the con-
cern manipulation environment. Technical report, Vrije Uni-
versteit Brussel, 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[Gru93] Thomas R. Gruber. A translation approach to portable on-
tology specifications. Knowl. Acquis., 5(2):199–220, 1993.

[Hed97] Görel Hedin. Language support for design patterns using
attribute extension. Lecture Notes in Computer Science,
1357:137+, 1997.

[HOA+06] Elnar Hajiyev, Neil Ongkingco, Pavel Avgustinov, Oege
de Moor, Damien Sereni, Julian Tibble, and Mathieu Ver-
baere. Datalog as a pointcut language in aspect-oriented pro-
gramming. In OOPSLA ’06: Companion to the 21st ACM
SIGPLAN conference on Object-oriented programming sys-
tems, languages, and applications, pages 667–668, New York,
NY, USA, 2006. ACM.

[HVdMdV05] Elnar Hajiyev, Mathieu Verbaere, Oege de Moor, and Kris
de Volder. CodeQuest: Querying source code with data-
log. In Object-Oriented Programming Languages and Systems
(OOPSLA) Companion. ACM Press, 2005.

[KC02] A. Kacofegitis and N. Churcher. Theme-based literate pro-
gramming. In Theme-based literate programming, 2002.

[KHR07] Günter Kniesel, Jan Hannemann, and Tobias Rho. A com-
parison of logic-based infrastructures for concern detection
and extraction. In LATE ’07: Proceedings of the 3rd work-
shop on Linking aspect technology and evolution, page 6, New
York, NY, USA, 2007. ACM.

[KM01] Mira Kajko-Mattsson. The state of documentation practice
within corrective maintenance. In ICSM ’01: Proceedings of
the IEEE International Conference on Software Maintenance
(ICSM’01), page 354, Washington, DC, USA, 2001. IEEE
Computer Society.

[Knu84] Donald E. Knuth. Literate programming. Comput. J.,
27(2):97–111, 1984.

92

Rule-based Documentation REFERENCES

[KP96] Christian Krämer and Lutz Prechelt. Design recovery by
automated search for structural design patterns in object-
oriented software. In Working Conference on Reverse Engi-
neering, pages 208–, 1996.

[LSF03] Timothy C. Lethbridge, Janice Singer, and Andrew Forward.
How software engineers use documentation: The state of the
practise. IEEE Software, pages 35–39, 2003.

[Mar01] Marius Marin. Formalizing typical crosscutting concerns.
Technical report, Software Engineering Research Group,
Delft University of Technology, 2001.

[MK06] Kim Mens and Andy Kellens. IntensiVE, a toolsuite for doc-
umenting and checking structural source-code regularities. In
CSMR ’06: Proceedings of the Conference on Software Main-
tenance and Reengineering, pages 239–248, Washington, DC,
USA, 2006. IEEE Computer Society.

[MM83] C McClure and J Martin. Software Maintenance, The Prob-
lem and Its Solutions. Prentice-Hall Inc., New Jersey 07632,
1983.

[MMvD07] Marius Marin, Leon Moonen, and Arie van Deursen. So-
QueT: Query-based documentation of crosscutting concerns.
In ICSE ’07: Proceedings of the 29th International Confer-
ence on Software Engineering, pages 758–761, Washington,
DC, USA, 2007. IEEE Computer Society.

[NAC+00] Kurt Nømark, Max Andersen, Claus Christensen, Vathanan
Kumar, Søren Staun-Pedersen, and Kristian Sørensen. Elu-
cidative programming in java. In IPCC/SIGDOC ’00: Pro-
ceedings of IEEE professional communication society inter-
national professional communication conference and Proceed-
ings of the 18th annual ACM international conference on
Computer documentation, pages 483–495, Piscataway, NJ,
USA, 2000. IEEE Educational Activities Department.

[Nør00] Kurt Nørmark. Requirements for an elucidative programming
environment. International Workshop on Program Compre-
hension, 2000.

[NSW+02] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wen-
dehals, and Jim Welsh. Towards pattern-based design recov-
ery. In ICSE ’02: Proceedings of the 24th International Con-
ference on Software Engineering, pages 338–348, New York,
NY, USA, 2002. ACM Press.

93

Rule-based Documentation REFERENCES

[PHW04] P.Tarr, H.Ossher, and W.Harrison. Pervasive query support
in the concern manipulation environment. Technical report,
IBM Research Report RC23343 (W0409-135), 2004.

[Rie98] Dirk Riehle. Bureaucracy. In Robert Martin, Dirk Riehle, and
Frank Buschmann, editors, Pattern Languages of Program
Design 3, pages 163–185. Addison Wesley, 1998.

[Rie00] Dirk Riehle. Framework Design - A Role Modeling Appraoch.
PhD thesis, Swiss Federal Institute Of Technology Zurich,
2000.

[RWL96] T. Reenskaug, P. Wold, and O. A. Lehne. Working with
objects: the Ooram software engineering method. Manning
Publications, Greenwich, CT, 1996.

[Smi02] David Smith, Jason McC.; Stotts. Elemental design patterns
- a link between architecture and object semantics. Technical
report, University of North Carolina at Chapel Hill, 2002.

[SRK07] Daniel Speicher, Tobias Rho, and Günter Kniesel. JTrans-
former - eine logikbasierte infrastruktur zur codeanalyse.
Universität Bonn, Institut für Informatik III, 2007.

[Tan03] Kajal Tansalarak, Naiyana; Claypool. Mining for sample
code. Technical report, Department of Computer Science,
University of Massachusetss - Lowell USA, 2003.

[TH06] Nikolaos Tsantalis and Spyros T. Halkidis. Design pattern
detection using similarity scoring. IEEE Trans. Softw. Eng.,
32(11):896–909, 2006. Member-Alexander Chatzigeorgiou
and Member-George Stephanides.

[TL03] Toufik Taibi and David Ngo Chek Ling. Formal specification
of design patterns - a balanced approach. Journal of Object
Technology, 2(4):127–140, 2003.

[Usc96] Michael Uschold, Mike; Grüninger. Ontologies: principles,
methods, and applications. Knowledge Engineering Review,
11(2):93–155, 1996.

[Ves99] Henrik Morck Mogensen; Kristian Ravn Tylvad;Thomas Ves-
tam. DocSewer - a documentation tool (prethesis). Technical
report, Institute of Electronic Systems - Aalborg University
- Department of Computer Science, 1999.

[Ves04] Thomas Vestdam. Tools, Patterns, and Experiments. PhD
thesis, Aalborg University, Department of Computer Science,
2004.

94

Rule-based Documentation REFERENCES

[Vol01] Kris de Volder. JQuery: A generic code browser with a
declarative configuration language. Technical report, Uni-
versity of British Columbia, Vancouver BC, Canada, 2001.

[Wen03] Lothar Wendehals. Improving design pattern instance recog-
nition by dynamic analysis. ICSE 2003 Workshop on Dy-
namic Analysis (WODA), Portland, 2003.

[Wer07] Jochen Wertenauer. codation - verbindung von code mit
zusatzinformation. Diploma thesis, Institut für Softwaretech-
nologie, Universität Stuttgart, 01 2007.

95

Confirmation

I confirm that I independently prepared the thesis and that I used only the
references and auxiliary means indicated in the thesis.

Dresden, January 31, 2008

	Introduction
	Problem specification
	Hypotheses
	Structure of this thesis
	Demarcation

	Related Work
	Classification of current documentation approaches
	Documentation embedded in program
	Program embedded in documentation
	Unrelated documentation and source code documents
	Directly related documentation and source code documents
	Indirectly related documentation and source code documents
	Conclusion

	Describing and Recognizing Patterns
	By Pattern Role Annotation
	By decomposition to elemental patterns
	Using pointcut languages
	Graph based approaches
	Ontology based approaches
	By using a logic programming language
	Conclusion

	Conception
	Requirements Analysis
	A theoretical foundation
	The Role Modeling Approach
	The Documentation Model of RuBaDoc
	Formal describing a collaboration with DataLog
	Conclusion

	Domain Model
	Documentation Language
	Rating of documentation entries
	Context Independent Heuristics
	Context Sensitive Heuristics

	Conclusion

	Tool Implementation
	The Eclipse Platform as a foundation for RuBaDoc
	The RuBaDoc Eclipse Plug-in
	The Consistency of the Code--Comment Relation
	Architecture model
	JQuery Integration
	Documentation Parser
	Eclipse Documentation View
	Relevance Ordering Mechanism
	Documentation Explorer
	Documentation Input Dialog

	Conclusion

	Evaluation
	Evaluation Criterions
	RuBaDoc Eclipse Plugin
	JHotDraw
	Apache Tomcat
	Conclusion

	Conclusion and Future Work
	Built-in JQuery Specific TyRuBa predicates and rules
	Unary Core Predicates
	Binary Core Predicates
	Ternary Core Predicates
	Derived Predicates
	Custom Predicates

	The JavaCC Grammar File
	The RuBaDoc Project-CD
	Initializing The Plug-In

